在面试的时候二分查找是用的比较多一种查找算法,如何在面试官面前快速准确得的写出代码决定你是否能够被录取。以前一直以为二分查找很简单,所以就没怎么重视,但是真要在面试官面前对着黑板手写出来,还是漏洞百出。今天自己在电脑面前敲出了二分查找的代码,也花了将近半个小时。对于这种基础排序查找算法,还是得好好重视。
- 二分查找的时间复杂度是O(log(n)),最坏情况下的时间复杂度是O(n)。
- 二分查找的一个条件是待查询的数组是有序的,我们假设这里的数组是升序的。
- 二分查找的主要思路就是设定两个指针start和end分别指向数组元素的收尾两端,然后比较数组中间结点arry[mid]和待查找元素。如果待查找元素小于中间元素,那么表明带查找元素在数组的前半段,那么将end=mid-1,如果待查找元素大于中间元素,那么表明该元素在数组的后半段,将start=mid+1;如果中间元素等于待查找元素,那么返回mid的值。
二分查找可以使用递归和非递归的方法来解决,下面给出代码实例。
#include<iostream>
#include<stdlib.h>
using namespace std;
//不适用递归,如果存在返回数组位置,不存在则返回-1
int BinarySearch(int arry[],int len,int value)
{
//如果传入的数组为空或者数组长度<=0那么就返回-1。防御性编程
if(arry==NULL||len<=0)
return -1;
int start=0;
int end=len-1;
while(start<=end)//判断清是否有=
{
int mid=start+(end-start)/2;
if(arry[mid]==value)
return mid;
else if(value<arry[mid])
end=mid-1;
else
start=mid+1;
}
return -1;
}
//改进思路:1.不要传参,而是传引用调用,减少垃圾
// 2.使用模板
int BinarySearchRecursion(int arry[],int value,int start,int end)
{
if(start>end)
return -1;
int mid=start+(end-start)/2;
if(arry[mid]==value)
return mid;
else if(value<arry[mid])
return BinarySearchRecursion(arry,value,start,mid-1);
else
return BinarySearchRecursion(arry,value,mid+1,end);
}
int BinarySearchRecursion(int arry[],int len,int value)
{
//如果传入的数组为空或者数组长度<=0那么就返回-1。防御性编程
if(arry==NULL||len<=0)
return -1;
return BinarySearchRecursion(arry,value,0,len-1);
}
void main()
{
int arry[]={1,2,3,4,5,6,7,8};
int len=sizeof(arry)/sizeof(int);
int index=BinarySearch(arry,len,4);
cout<<"index:"<<index<<endl;
int index2=BinarySearchRecursion(arry,len,9);
cout<<"index2:"<<index2<<endl;
system("pause");
}
<p> 在上述递归的二分查找方法中:</p><div class="cnblogs_code"><pre><span style="color:#0000ff;">int</span> BinarySearchRecursion(<span style="color:#0000ff;">int</span> arry[],<span style="color:#0000ff;">int</span> value,<span style="color:#0000ff;">int</span> start,<span style="color:#0000ff;">int</span> end)
我们可以发现这个方法中的后三个参数value,start,end采用的是传值调用,只有第一个参数arry是传址调用。我们知道在效率方面,传值调用要比传址调用来的低,因为传值调用要进行一次变量的拷贝,而传址调用则是直接对这个变量进行操作。因此这里我们可以将后面的三个参数改为传址调用
改进后的代码实例如下:
在上述递归的二分查找方法中:
int BinarySearchRecursion(int arry[],int value,int start,int end)
我们可以发现这个方法中的后三个参数value,start,end采用的是传值调用,只有第一个参数arry是传址调用。我们知道在效率方面,传值调用要比传址调用来的低,因为传值调用要进行一次变量的拷贝,而传址调用则是直接对这个变量进行操作。因此这里我们可以将后面的三个参数改为传址调用
改进后的代码实例如下:
int BinarySearchRecursion(int arry[],int &value,int &start,int &end)
{
if(start>end)
return -1;
int mid=start+(end-start)/2;
if(arry[mid]==value)
return mid;
else if(value<arry[mid])
{
end=mid-1;
return BinarySearchRecursion(arry,value,start,end);
}
else
{
start=mid+1;
return BinarySearchRecursion(arry,value,start,end);
}
}
int BinarySearchRecursion(int arry[],int &len,int &value)
{
//如果传入的数组为空或者数组长度<=0那么就返回-1。防御性编程
if(arry==NULL||len<=0)
return -1;
int start=0;
int end=len-1;
return BinarySearchRecursion(arry,value,start,end);
}
void main()
{
int arry[]={1,2,3,4,5,6,7,8};
int len=sizeof(arry)/sizeof(int);
int especteNum1=4;
int especteNum2=9;
int index=BinarySearch(arry,len,especteNum1);
cout<<"index:"<<index<<endl;
int index2=BinarySearchRecursion(arry,len,especteNum2);
cout<<"index2:"<<index2<<endl;
system("pause");
}