数学漫谈:深入理解e

本文探讨了数学中的重要概念,包括数列极限的定义,通过戴德金分割证明实数系的性质,展示了单调有界数列必有极限的定理。此外,还详细介绍了帕斯卡法则、二项式定理及其引理,并利用均值不等式定理证明了常数e的存在。最后,通过夹逼定理进一步巩固了e的极限性质。
摘要由CSDN通过智能技术生成

定义:数列极限

设{ x_{n}}为一个无穷实数数列的集合。如果存在实数\alpha,对于任意实数\varepsilon(无论其有多么小),\existsN>0,使不等式|x_{n}-\alpha|<\varepsilon在n\in(N, +\infty)上恒成立,那么就称常数\alpha数列{x_{n}} 的极限。

定义:戴德金分割

将一切有理数的集合划分为两个非空且不相交的子集A和A',使得集合A中的每一个元素小于集合A'中的每一个元素。集合A称为划分的下组,集合A'称为划分的上组,并将这种划分记成A|A'。

戴德金定理

若A|A'是实数系R的戴德金分割,则由它可确定惟一实数β,若β落在A内,则它为A中最大数,若β落在A'内,则它是A'中最小数。

证明:

已知对于戴德金分割,把实数域拆分成两个均非空集A及A',使能满足:

情形1:每一实数必落在集A或A'中的一个且仅一个之内;

情形2:集A的每一数α小于集A'的每一数α'。

将属于A的一切有理数集记成AR,属于A'的一切有理数集记成AR',容易证明,集AR和集AR'形成有理数域内的一个分划。

这分划AR|AR'确定出某一实数β。如果β满足:∀α,α≤β,那么β属于集A,并且β是集A中的最大数。

假设:β不是集A中的最大数。那么∃γ,γ∈A,并且γ>β。那么,存在有理数η,满足:γ>η>β。这与前提矛盾。因此,β是集A中的最大数。

同理可证β属于集A'的情形。

定理:单调有界数列必有极限

证明:

设数列{x_{n}}单调递增且有上界。

第1种情形,如果{x_{n}}从第N项开始所有的项都相等,由于数列是单调递增的,当n>N时,X_{n}=X_{N}。所以,\forall\varepsilon>0,|X_{n}-X_{N}|=0<\varepsilon。X_{N}是数列{x_{n}}的极限。

第2种情形,如果{x_{n}}只有有限项相等,那么数列从某项开始严格递增。

1.\forall\alpha\in{X_{n}},\existsX_{k}\in{X_{n}},\alpha<X_{k}。所以,\forall\alpha\in{X_{n}},\alpha都不是{X_{n}}的上界。

2.取集合B包含{x_{n}}的所有上界。取集合A=R/B。

3.B\neq\phi,A\neq\phi

4.A

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值