题意:
在第一块石头到到第二块石头的通路中,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中有一个最大距离,现在要求求出所有通路的最大距离,并把这些最大距离作比较,把最小的一个最大距离输出。
分析:
全源最短路径(Folyd算法)(n*3)变换。
#include<stdio.h>
#include<math.h>
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
struct point{
int x,y;
};
int N;
struct point map[205];
double d[205][205];
double getDis(int i,int j){
if(i==j) return 0;
return sqrt((map[i].x-map[j].x)*(map[i].x-map[j].x)*1.0+(map[i].y-map[j].y)*(map[i].y-map[j].y));//poj上sqrt参数必须与返回值同一类型
}
void Floyd(){
int i,j,k;
for(i=1;i<=N;++i)
for(j=i;j<=N;++j)
d[i][j]=d[j][i]=getDis(i,j);
for(k=1;k<=N;k++)
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
d[i][j]=min(d[i][j],max(d[i][k],d[k][j]));//d[i][j]为从i到j不同通路中最大的两点距离的最小值
}
int main(){
// freopen("in.txt","r",stdin);
int i,m,n;
int cas=0;
while(scanf("%d",&N)&&N!=0){
for(i=1;i<=N;++i){
scanf("%d%d",&n,&m);
map[i].x=n;
map[i].y=m;
}
Floyd();
printf("Scenario #%d\nFrog Distance = %.3lf\n\n",++cas,d[1][2]);
}
return 0;
}