并查集

第一次遇到并查集这个数据结构,发现这是一种很高效的算法,便打算纪录下来;

当题目给定多条整数对,我们需要设计数据结构来保存已知的所有整数对的足够多的信息,并用它们来判断一对新对象是否是相连的;
并查集就适用于这种动态连通性问题。

union-find算法有这五种方法
* UF
* void union()
* int find()
* bool connected
* int count

代码实现

class WeightUF {
private:
    int * id;
    int * sz;
    int * rank;
    int count;

public:
    WeightUF(int N) {
        count = N;
        id = new int[N];
        sz = new int[N];
        rank = new int[N];
        for (int i = 0; i < N; i++) {
            id[i] = i;
            rank[i] = 0;
            sz[i] = 1;
        }
    }

    ~WeightUF() {
        delete [] id;
        delete [] sz;
        delete [] rank;
    }

    int find(int p) {
        while (p != id[p]) {
            id[p] = id[id[p]];
            p = id[p];
        }
        return p;
    }

    int getCount() {
        return count;
    }

    bool connected(int p, int q) {
        return find(p) == find(q);
    }

    void connect(int p, int q) {
        int i = find(p);
        int j = find(q);
        if (i == j) return;
        // 将小树的跟结点连接到大树的跟结点上
        if (sz[i] < sz[j]) {
            id[i] = j;
            sz[j] += sz[i];
        }
        else {
            id[j] = i;
            sz[i] += sz[j];
            if (sz[i] == sz[j])
                rank[i]++;
        }
        count--;
    }

};

上面的算法直接使用了(按秩合并)路径压缩的加权quick-union算法;
比较quick-find和quick-union;

quick-union是为了解决quick-find中union没输入一对数据都需要扫描整个id数组,虽然find只需要访问一次数组,但是归并需要平方级别的复杂程度;

而weight quick-union则是为了解决随意的将一棵树连接到另一棵树上,于是记录每棵树的大小并总是将较小的树连接到较大的树上;


性能比较

算法构造函数unionfind
quick-find算法NN1
quick-union算法N树的高度树的高度
加权quick-unionNlogNlogN
使用路径压缩的加权quick-unionN接近1接近1
理想情况N11
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值