使用Redis实现缓存穿透的解决方案

使用Redis实现缓存穿透的解决方案

大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!

在缓存系统中,缓存穿透是指访问不存在的数据,导致请求直接穿透缓存层,直接访问数据库,造成数据库压力过大,甚至影响系统稳定性。本文将深入探讨如何使用Redis实现有效的缓存穿透解决方案。

1. 基本概念和问题背景

缓存穿透通常发生在恶意攻击或者大量请求查询不存在的数据时。例如,某些恶意用户不断查询不存在的用户信息,导致每次请求都要访问数据库,严重影响系统性能。为了解决这个问题,我们可以引入布隆过滤器和空值缓存等技术手段。

2. 使用布隆过滤器过滤无效请求

布隆过滤器是一种高效的数据结构,用于快速判断一个元素是否存在于集合中。在缓存层加入布隆过滤器,可以快速过滤掉不存在的请求,避免对数据库的直接查询。

package cn.juwatech.example;

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import javax.annotation.PostConstruct;

@Service
public class BloomFilterService {

    @Autowired
    private RedisService redisService;

    private BloomFilter<String> bloomFilter;

    @PostConstruct
    public void init() {
        int expectedInsertions = 1000000;
        double fpp = 0.01; // False Positive Probability
        bloomFilter = BloomFilter.create(Funnels.stringFunnel(), expectedInsertions, fpp);
    }

    public boolean mightContain(String key) {
        return bloomFilter.mightContain(key);
    }

    public void put(String key) {
        bloomFilter.put(key);
    }
}
3. 空值缓存策略

当查询的数据确实不存在时,不直接访问数据库,而是将空结果设置到缓存中,设置合理的过期时间,避免空值缓存过久占用内存资源。

package cn.juwatech.example;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import java.util.concurrent.TimeUnit;

@Service
public class CacheService {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    public Object get(String key) {
        return redisTemplate.opsForValue().get(key);
    }

    public void set(String key, Object value, long timeout, TimeUnit unit) {
        redisTemplate.opsForValue().set(key, value, timeout, unit);
    }

    public void setNull(String key, long timeout, TimeUnit unit) {
        redisTemplate.opsForValue().set(key, "", timeout, unit); // Placeholder for null value
    }

    public boolean exists(String key) {
        return redisTemplate.hasKey(key);
    }
}
4. 实现缓存穿透解决方案

结合布隆过滤器和空值缓存策略,实现完整的缓存穿透解决方案。在查询前先通过布隆过滤器判断是否存在于缓存中,如果存在则直接返回缓存数据;如果不存在,则进行数据库查询,查询结果为空时设置空值缓存,并设置较短的过期时间,避免重复查询。

package cn.juwatech.example;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.concurrent.TimeUnit;

@Service
public class DataService {

    @Autowired
    private CacheService cacheService;

    @Autowired
    private DatabaseService databaseService;

    @Autowired
    private BloomFilterService bloomFilterService;

    public Object getData(String key) {
        if (bloomFilterService.mightContain(key)) {
            if (cacheService.exists(key)) {
                return cacheService.get(key);
            } else {
                Object data = databaseService.getData(key);
                if (data != null) {
                    cacheService.set(key, data, 10, TimeUnit.MINUTES); // Example: cache for 10 minutes
                    return data;
                } else {
                    cacheService.setNull(key, 1, TimeUnit.MINUTES); // Example: cache null value for 1 minute
                    return null;
                }
            }
        } else {
            return null; // Request not in bloom filter, likely invalid
        }
    }
}

通过以上实现,我们能够有效地解决缓存穿透问题,提升系统的性能和稳定性,确保对数据库的请求能够得到有效地缓存和利用。

微赚淘客系统3.0小编出品,必属精品,转载请注明出处!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值