网络流3最小路径覆盖问题

题目大意:

对于给定的有向无环图,找出其中的最小路径覆盖,并打印出第一条路径。

题目测试数据与数据范围:

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11


1 4 7 10 11

2 5 8

3 6 9

3

顶点数与边数的范围不定。

题目分折:

有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决。构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi。对于原图中存在的每条边(i,j),在二分图中连接边(Xi,Yj)。然后把二分图最大匹配模型转化为网络流模型,求网络最大流。最小路径覆盖的条数,就是原图顶点数,减去二分图最大匹配数。沿着匹配边查找,就是一个路径上的点,输出所有路径即可。对于一个路径覆盖,有如下性质:
1、每个顶点属于且只属于一个路径。
2、路径上除终点外,从每个顶点出发只有一条边指向路径上的另一顶点。


小乐一下:

所以我们可以把每个顶点理解成两个顶点,一个是出发,一个是目标,建立二分图模型。该二分图的任何一个匹配方案,都对应了一个路径覆盖方案。如果匹配数为0,那么显然路径数=顶点数。每增加一条匹配边,那么路径覆盖数就减少一个,所以路径数=顶点数 - 匹配数。要想使路径数最少,则应最大化匹配数,所以要求二分图的最大匹配。注意,此建模方法求最小路径覆盖仅适用于有向无环图,

我的代码,无论你怎么说,我总是觉得刘汝佳的代码格式很优秀,当然,更好更简洁的由你来实现,不能直接复制。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
const int INF = 0x3fffffff;
const int maxn = 1005;

struct Edge{
    int from,to,cap,flow;
};

struct Dinic{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];

    void Init(){
        for(int i = 0;i<maxn;i++) G[i].clear();
        edges.clear();
    }
    void AddEdge(int from,int to,int cap){
        edges.push_back((Edge){from,to,cap,0});
        edges.push_back((Edge){to,from,0,0});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
     bool BFS(){
         memset(vis,0,sizeof(vis));
         queue<int> Q;
         Q.push(s);
         d[s] = 0;
         vis[s] = 1;
         while(!Q.empty()){
            int x = Q.front();Q.pop();
            for(int i = 0;i<G[x].size();i++){
                Edge & e = edges[G[x][i]];
                if(!vis[e.to] && e.cap > e.flow){
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
         }
         return vis[t];
     }
     int DFS(int x,int a){
         if(x==t || a==0) return a;
         int flow = 0,f;
         for(int &i = cur[x];i<G[x].size();i++){
            Edge &e = edges[G[x][i]];
            if(d[x] + 1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if(a==0) break;
            }
         }
         return flow;
     }
     int Maxflow(int s,int t){
         this->s = s;
         this->t = t;
         int flow = 0;
         while(BFS()){
            memset(cur,0,sizeof(cur));
            flow += DFS(s,INF);
         }
         return flow;
     }
    void Topath(int n){
        memset(vis,false,sizeof(vis));
        for(int u = 1;u<=n;u++){
            int tmp = u;
            if(vis[tmp]) continue;
            int first = 1;
            while(!vis[tmp]){
                vis[tmp] = true;
                if(first) {printf("%d",tmp);first = 0;}
                else printf(" %d",tmp);
                for(int i = 0;i<G[tmp].size();i++){
                    if(edges[G[tmp][i]].flow > 0){
                        tmp = edges[G[tmp][i]].to-n;
                        break;
                    }
                }
            }
            printf("\n");
        }
    }
};

int main(){
    Dinic Graph;
    int i,u,v,m,n;
    int a,b;
    while(scanf("%d%d",&n,&m)!=EOF){
        Graph.Init();
        for(i = 1;i<=n;i++) Graph.AddEdge(0,i,1);
        for(i = n+1;i<=2*n;i++) Graph.AddEdge(i,2*n+1,1);
        for(i = 1;i<=m;i++){
            scanf("%d%d",&a,&b);
            Graph.AddEdge(a,b+n,1);
        }
        printf("%d\n",n-Graph.Maxflow(0,2*n+1));
        Graph.Topath(n);
    }
    return 0;
}

伟大的梦想成就伟大的人,从细节做好,从点点滴滴做好,从认真做好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值