[size=medium]
(1)Topologies 拓扑
解释:
拓扑类似一个集装箱,所有的货物都会存储在集装箱里面最后被托运走,storm里面所有的代码和文件最终会被打包在一个拓扑中,然后提交在storm集群中运行,类似于Hadoop中的一个MapReduce的作业,最大的区别在于MapReduce最终会主动停止,Storm的Topologies不会主动停止,除非你强制kill掉它
相关拓展:
TopologyBuilder : Java里面构造Topology工具类
生产模式
Config conf = new Config();
conf.setNumWorkers(20);
conf.setMaxSpoutPending(5000);
StormSubmitter.submitTopology("mytopology", conf, topology);
本地模式
import org.apache.storm.LocalCluster;
LocalCluster cluster = new LocalCluster();
(2)Streams 数据流
Stream是Storm里面的核心抽象模型,在分布式环境下一个数据流是由无限的tuple序列组成,这些通过数据源并行的源源不断的被创建出来,Stream的schema是由一个字段名标识,值类型可以是integer,long,shot,bytes,string,double,float,boolean,byte array当然我们可以自定义序列化类型。
每个流在声明时会被指定一唯一标识id,如果输出的流只有一个可以不用标识,默认指定的id是default
OutputFieldsDeclarer类负责输出标识
单个流声明:
declarer.declare(new Fields("single")
多个流声明:
declarer.declareStream("a", new Fields("data", "time", "countyId")
declarer.declareStream("b", new Fields("data", "time", "countyId")
declarer.declareStream("c", new Fields("data", "time", "countyId")
相关拓展:
Tuple:streams由一系列tuple组成
OutputFieldsDeclarer:用于声明流和他们的schema
Serialization:动态tuple类型和声明自定义序列化
(3)Spouts (喷嘴比喻数据源)
一个spout是由流组成的数据源在storm的拓扑里,通常情况下会读取外部的数据源
然后emit(发射)到拓扑里面,比如是kafka,MySQL或者redis等等,Spout有两种实现一种是可靠的消息实现,如果发送失败则会重试,另外一种是不可靠的消息实现可能会出现消息丢失,spout可以一次声明多个数据流通过OutputFieldsDeclarer类的declareStream方法,当然前提是你的SpoutOutputCollector里的emit也是多个流
Spout里面主要的方法是nextTuple,它里面可以发射新的tuple到拓扑,或者当没有消息的时候就return,需要注意,这个方法里面不能阻塞,因为storm调用spout方法是单线程的,其他的主要方法是ack和fail,如果使用了可靠的spout,可以使用ack和fail来确定消息发送状态
相关扩展:
IRichSpout:spout类必须实现的接口
BaseRichBolt :可靠的spout有ack确保
BaseBasicBolt :不可靠的spout
(4)Bolts 业务处理单元
所有的拓扑处理都会在bolt中进行,bolt里面可以做任何etl,比如过滤,函数,聚合,连接,写入数据库系统或缓存等,一个bolt可以做简单的事件流转换,如果是复杂的流转化,往往需要多个bolt参与,这就是流计算,每个bolt都进行一个业务逻辑处理,bolt也可以emit多个流到下游,通过declareStream方法声明输出的schema。
Bolt里面主要的方法是execute方法,每次处理一个输入的tuple,bolt里面也可以发射新的tuple使用OutputCollector类,bolt里面每处理一个tuple必须调用ack方法以便于storm知道某个tuple何时处理完成。Strom里面的IBasicBolt接口可以自动
调用ack。
相关拓展:
IRichBolt:bolts的通用接口
IBasicBolt:扩展的bolt接口,可以自动处理ack
OutputCollector:bolt发射tuple到下游bolt里面
(5)Stream grouping 流分组
分组定义了那个bolt可以收到上游的数据流,流分组定义了stream应该怎样在所有的bolt task中进行分区
目前storm内置8中分组接口可以满足大多数应用开发,你也可以通过 CustomStreamGrouping来自定义分组接口
(5.1)Shuffle grouping 随机的分发数据流,保证每个bolt可以得到相等数量的tuple
(5.2)Fields grouping
在grouping中stream通过字段进行分区分发,比如按照userid分组,那么storm能保证在同一个task中收到的userid是一样的,但是在不同的task中,他们的userid也是不一样的
(5.3)Partial Key grouping
同Fields grouping类似,但是这个流分组能在数据有倾斜的情况下做负载均衡
(5.4)All grouping
所有的bolt task都会收到此分组下的消息
(5.5)Global grouping
所有的stream都会发射到多个bolt task中的其中一个
(5.6)None grouping
等同于Shuffle grouping
(5.7)Direct grouping
由生产者控制把tuple直接发送到那个消费者的bolt中,需要在代码里面控制
(5.8)Local or shuffle grouping
如果目标bolt有一个或多个task,在一个worker工作进程中,tuple仅仅会分发
到在同一个进程的task中,分发方式类似shuffle grouping
扩展:
TopologyBuilder:使用这个类定义拓扑
InputDeclarer: 声明那些声明的流可以被指定的bolt接受
(6)Reliability 可靠性
使用ack保证,消息可以超时和重试
(7)Tasks 任务
每个spout和bolt会执行多个task横跨整个集群,每个task会在一个线程中执行
stream grouping定义了每个task送到到那个下游的task中,在使用TopologyBuilder时,可通过setSpout 和 setBolt方法进行设置
(8)Workers 工作者
Topologies执行会横跨在一个或多个worker上,每个worker是一个独立的jvm,会执行所有task里面的其中一部分task,比如一个拓扑的并行度是300并且有50个worker,那么每个worker上会执行6个task(6个线程在worker内部),storm会确保
所有的task尽量均衡的分布在所有worker中。
相关扩展:
设置worker数
conf..setNumWorkers(workNums);
[/size]
[b][color=green][size=large]
有什么问题可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。
技术债不能欠,健康债更不能欠, 求道之路,与君同行。
[/size][/color][/b]
[img]http://dl2.iteye.com/upload/attachment/0104/9948/3214000f-5633-3c17-a3d7-83ebda9aebff.jpg[/img]
(1)Topologies 拓扑
解释:
拓扑类似一个集装箱,所有的货物都会存储在集装箱里面最后被托运走,storm里面所有的代码和文件最终会被打包在一个拓扑中,然后提交在storm集群中运行,类似于Hadoop中的一个MapReduce的作业,最大的区别在于MapReduce最终会主动停止,Storm的Topologies不会主动停止,除非你强制kill掉它
相关拓展:
TopologyBuilder : Java里面构造Topology工具类
生产模式
Config conf = new Config();
conf.setNumWorkers(20);
conf.setMaxSpoutPending(5000);
StormSubmitter.submitTopology("mytopology", conf, topology);
本地模式
import org.apache.storm.LocalCluster;
LocalCluster cluster = new LocalCluster();
(2)Streams 数据流
Stream是Storm里面的核心抽象模型,在分布式环境下一个数据流是由无限的tuple序列组成,这些通过数据源并行的源源不断的被创建出来,Stream的schema是由一个字段名标识,值类型可以是integer,long,shot,bytes,string,double,float,boolean,byte array当然我们可以自定义序列化类型。
每个流在声明时会被指定一唯一标识id,如果输出的流只有一个可以不用标识,默认指定的id是default
OutputFieldsDeclarer类负责输出标识
单个流声明:
declarer.declare(new Fields("single")
多个流声明:
declarer.declareStream("a", new Fields("data", "time", "countyId")
declarer.declareStream("b", new Fields("data", "time", "countyId")
declarer.declareStream("c", new Fields("data", "time", "countyId")
相关拓展:
Tuple:streams由一系列tuple组成
OutputFieldsDeclarer:用于声明流和他们的schema
Serialization:动态tuple类型和声明自定义序列化
(3)Spouts (喷嘴比喻数据源)
一个spout是由流组成的数据源在storm的拓扑里,通常情况下会读取外部的数据源
然后emit(发射)到拓扑里面,比如是kafka,MySQL或者redis等等,Spout有两种实现一种是可靠的消息实现,如果发送失败则会重试,另外一种是不可靠的消息实现可能会出现消息丢失,spout可以一次声明多个数据流通过OutputFieldsDeclarer类的declareStream方法,当然前提是你的SpoutOutputCollector里的emit也是多个流
Spout里面主要的方法是nextTuple,它里面可以发射新的tuple到拓扑,或者当没有消息的时候就return,需要注意,这个方法里面不能阻塞,因为storm调用spout方法是单线程的,其他的主要方法是ack和fail,如果使用了可靠的spout,可以使用ack和fail来确定消息发送状态
相关扩展:
IRichSpout:spout类必须实现的接口
BaseRichBolt :可靠的spout有ack确保
BaseBasicBolt :不可靠的spout
(4)Bolts 业务处理单元
所有的拓扑处理都会在bolt中进行,bolt里面可以做任何etl,比如过滤,函数,聚合,连接,写入数据库系统或缓存等,一个bolt可以做简单的事件流转换,如果是复杂的流转化,往往需要多个bolt参与,这就是流计算,每个bolt都进行一个业务逻辑处理,bolt也可以emit多个流到下游,通过declareStream方法声明输出的schema。
Bolt里面主要的方法是execute方法,每次处理一个输入的tuple,bolt里面也可以发射新的tuple使用OutputCollector类,bolt里面每处理一个tuple必须调用ack方法以便于storm知道某个tuple何时处理完成。Strom里面的IBasicBolt接口可以自动
调用ack。
相关拓展:
IRichBolt:bolts的通用接口
IBasicBolt:扩展的bolt接口,可以自动处理ack
OutputCollector:bolt发射tuple到下游bolt里面
(5)Stream grouping 流分组
分组定义了那个bolt可以收到上游的数据流,流分组定义了stream应该怎样在所有的bolt task中进行分区
目前storm内置8中分组接口可以满足大多数应用开发,你也可以通过 CustomStreamGrouping来自定义分组接口
(5.1)Shuffle grouping 随机的分发数据流,保证每个bolt可以得到相等数量的tuple
(5.2)Fields grouping
在grouping中stream通过字段进行分区分发,比如按照userid分组,那么storm能保证在同一个task中收到的userid是一样的,但是在不同的task中,他们的userid也是不一样的
(5.3)Partial Key grouping
同Fields grouping类似,但是这个流分组能在数据有倾斜的情况下做负载均衡
(5.4)All grouping
所有的bolt task都会收到此分组下的消息
(5.5)Global grouping
所有的stream都会发射到多个bolt task中的其中一个
(5.6)None grouping
等同于Shuffle grouping
(5.7)Direct grouping
由生产者控制把tuple直接发送到那个消费者的bolt中,需要在代码里面控制
(5.8)Local or shuffle grouping
如果目标bolt有一个或多个task,在一个worker工作进程中,tuple仅仅会分发
到在同一个进程的task中,分发方式类似shuffle grouping
扩展:
TopologyBuilder:使用这个类定义拓扑
InputDeclarer: 声明那些声明的流可以被指定的bolt接受
(6)Reliability 可靠性
使用ack保证,消息可以超时和重试
(7)Tasks 任务
每个spout和bolt会执行多个task横跨整个集群,每个task会在一个线程中执行
stream grouping定义了每个task送到到那个下游的task中,在使用TopologyBuilder时,可通过setSpout 和 setBolt方法进行设置
(8)Workers 工作者
Topologies执行会横跨在一个或多个worker上,每个worker是一个独立的jvm,会执行所有task里面的其中一部分task,比如一个拓扑的并行度是300并且有50个worker,那么每个worker上会执行6个task(6个线程在worker内部),storm会确保
所有的task尽量均衡的分布在所有worker中。
相关扩展:
设置worker数
conf..setNumWorkers(workNums);
[/size]
[b][color=green][size=large]
有什么问题可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。
技术债不能欠,健康债更不能欠, 求道之路,与君同行。
[/size][/color][/b]
[img]http://dl2.iteye.com/upload/attachment/0104/9948/3214000f-5633-3c17-a3d7-83ebda9aebff.jpg[/img]