背包问题可能是动态规划算法中最经典的问题了,三种最常见的背包问题分别是0-1背包问题,完全背包问题和多重背包问题。关于这三种背包的讲解网上有很多,但是很多只是给出状态转移方程或写出伪代码,或者是只给出0-1背包和完全背包的代码但并没有多重背包的代码,因此本文在这里将系统地总结这三种背包问题的最佳解法及相应java代码。
题1.经典的0-1背包问题。给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。比如说,现在有一个背包,它一共能装50的物品,现在有三种物品,重量分别10,20,30,价值分别为60,100,120,每种物品最多选一次,问如何选可以在不超过背包容量的情况下获取的价值最大。
首先分析本题的状态转移方程,设dp[i][j]表示取到第i件物品,背包容量为j时,背包所装物品的价值,对于每一件物品,要不选要么不选,则
dp[i][j]=max{dp[i-1][j],dp[i-1][j-w[i]]+v[i]}.

本文详细介绍了0-1背包、完全背包和多重背包三种常见背包问题,包括它们的状态转移方程和Java代码实现。通过状态压缩,将二维数组优化为一维数组,降低了空间复杂度。对于每个问题,都提供了相应的动态规划解法,帮助读者理解和解决背包问题。
最低0.47元/天 解锁文章

1872

被折叠的 条评论
为什么被折叠?



