Localization Translate API 的对接和使用

Localization Translate API 的主要功能是通过输入需要翻译的文本来获取翻译后的文本,同时翻译后的语言可以自定义,并且翻译结果可以采用 jsonmarkdown 俩种主流的方法来输出。

本文档将详细介绍 Translate API 的对接说明,帮助您轻松集成并充分利用该 API 的强大功能。通过 Translate API ,您可以轻松实现将输入的文本翻译为特定语言,并且支持特定的方式来输出翻译结果。

申请流程

要使用 Localization Translate API,需要先到 申请页面 Localization Translate API 申请相应的服务,进入页面之后,点击「Acquire」按钮,如图所示:

申请页面

如果您尚未登录或注册,会自动跳转到登录页面邀请您来注册和登录,登录注册之后会自动返回当前页面。

首次申请时会有免费额度赠送,可以免费使用该 API。

请求示例

我们以一个英文输入为例,演示如何使用该 API。假设英文描述词为:# Title 1\n\nThis is a paragraph.\n\n## Title 2\n\nThis is another paragraph.,接下来演示如何上传英文描述词并获取中文的翻译结果,同时以 markdown 的形式展示出来。

设置请求头和请求体

Request Headers 包括:

  • accept:指定接收 JSON 格式的响应结果,这里填写为 application/json

  • authorization:调用 API 的密钥,申请之后可以直接下拉选择。

Request Body 包括:

  • input:上传的所需翻译的文本。

  • locale:自定义翻译的语言。

  • extension:自定义翻译结果的展示形式。

  • model:翻译采用的大模型,默认是 gpt-3.5。

设置如下图所示:

代码示例

可以发现,在页面右侧已经自动生成了各种语言的代码,如图所示:

部分代码示例如下:

CURL
curl -X POST 'https://api.acedata.cloud/localization/translate' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "input": "# Title 1\n\nThis is a paragraph.\n\n## Title 2\n\nThis is another paragraph.",
  "locale": "zh-CN",
  "extension": "md"
}'
Python
import requests
​
url = "https://api.acedata.cloud/localization/translate"
​
headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}
​
payload = {
    "input": "# Title 1\n\nThis is a paragraph.\n\n## Title 2\n\nThis is another paragraph.",
    "locale": "zh-CN",
    "extension": "md"
}
​
response = requests.post(url, json=payload, headers=headers)
print(response.text)

响应示例

请求成功后,API 将返回此处翻译任务的结果信息。例如:

{
  "data": "# 标题 1\n\n这是一个段落。\n\n## 标题 2\n\n这是另一个段落。",
  "usage": {
    "prompt_tokens": 172,
    "completion_tokens": 25
  },
  "model": "gpt-3.5-turbo-16k",
  "locale": "zh-CN"
}

可以看到,结果中有一个 data 字段,里面包含了翻译后的中文,同时采用了 markdown 的形式返回,其它信息如下所示:

  • data,此处翻译任务的结果。

  • model,此处翻译任务采用的大语言模型。

  • locale,此处翻译任务的翻译语言类型。

错误处理

在调用 API 时,如果遇到错误,API 会返回相应的错误代码和信息。例如:

  • 400 token_mismatched:Bad request, possibly due to missing or invalid parameters.

  • 400 api_not_implemented:Bad request, possibly due to missing or invalid parameters.

  • 401 invalid_token:Unauthorized, invalid or missing authorization token.

  • 429 too_many_requests:Too many requests, you have exceeded the rate limit.

  • 500 api_error:Internal server error, something went wrong on the server.

错误响应示例

{
  "success": false,
  "error": {
    "code": "api_error",
    "message": "fetch failed"
  },
  "trace_id": "2cf86e86-22a4-46e1-ac2f-032c0f2a4e89"
}

结论

通过本文档,您已经了解了如何使用 Localization Translate API 轻松实现将输入的文本翻译为特定语言,并且支持特定的方式来输出翻译结果。希望本文档能帮助您更好地对接和使用该 API。如有任何问题,请随时联系我们的技术支持团队。

Robot Localization是机器人定位技术的一部分,它涉及到在未知环境中让机器人确定其自身的位置和姿态。这个过程通常依赖于传感器数据,如激光雷达、视觉传感器或惯性测量单元(IMU),并与地图信息进行匹配。以下是Robot Localization的基本步骤和一些常见算法的简介: 1. **SLAM(Simultaneous Localization and Mapping)**:这是一个基础概念,用于实时构建环境地图的同时进行自身的定位。常见的SLAM算法有LOAM(Lidar Odometry and Mapping)、ORB-SLAM(基于特征点的)和DijkstraSLAM(基于图的)。 2. **滤波器(Filters)**:如卡尔曼滤波(KF)、粒子滤波(PF)或扩展卡尔曼滤波(EKF),用于处理传感器数据的不确定性并不断更新机器人的位置估计。 3. **概率图模型(Probabilistic Graphical Models)**:例如 Rao-Blackwellized Particle Filters(RBPF),利用贝叶斯网络表示状态空间的概率分布。 4. **定位算法**:常用的方法有GPS+INS(全球定位系统+惯性导航系统)、视觉地标识别、SLAM后的后处理(如ICP(Iterative Closest Point))。 5. **开源库**:很多机器人操作系统(ROS)包提供Robot Localization的功能,如`tf2`、`ORB_SLAM2`、`move_base`等,它们提供了接口和工具简化了开发过程。 **教程学习路径**: 1. **入门**:阅读ROS官方文档《Robot Localizaton with ROS》或GitHub上的示例代码,理解基本原理。 2. **理论**:学习概率论、统计学和SLAM相关的理论知识,如贝叶斯滤波和图优化算法。 3. **实践**:通过编写简单的ROS节点,使用公开的开源库或自定义算法,尝试在仿真环境或真实环境中实现定位。 4. **项目实战**:参与或完成机器人定位相关的项目,提升实际操作经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值