- 博客(890)
- 资源 (12)
- 收藏
- 关注
原创 大田上的路径跟踪论文汇总
自动地头转弯是农业作业中的重要组成部分。最小化时间和行驶距离,最大限度地提高车辆的运行效率是当前关注的问题。本研究试图提出一种基于非对称开关回转法的四轮车辆动态转弯路径规划方法。当农用车辆在现场滑动时,该算法将根据车辆的实时位置动态重新规划路线,以提高运行效率,减少频繁调整方向盘造成的机械磨损。仿真结果表明,当行宽为2m,并添加一些噪声时,该算法规划的轨迹长度减少了31.42 %,横向偏差降低了95.65 %。
2024-09-19 15:57:46 376
原创 基于Sparse Optical Flow 的Homography estimation
【代码】基于Sparse Optical Flow 的Homography estimation。
2024-09-18 20:19:10 405
原创 基于SIFT / ORB的Homography estimation
【代码】基于SIFT / ORB的Homography estimation。
2024-09-18 20:06:50 261
原创 使用yoloPose进行单目行人距离估计
YOLOv8 是由 Ultralytics 开发的最新版本的 YOLO(You Only Look Once)系列模型,以其速度和准确度著称。YOLOv8-pose 结合了对象检测与关键点检测的能力,能够在图像和视频中准确地检测和定位人体的关节点(如头部、肩膀、肘部、膝盖等),从而推断出人体的姿态。找出肩膀和髋关节的关键点,肩膀到髋关节的距离假设为0.5m,并计算其在像素空间上的欧式距离,结合焦距F便可估计出距离。
2024-09-05 14:14:00 260
原创 多目标跟踪数据集制作——darklabel
DarkLabel 是一个用于多目标跟踪 (MOT) 数据集制作的工具,主要用于标注视频中的目标,并为后续的跟踪算法提供高质量的数据。它的功能和特点包括:易用性:DarkLabel 提供了用户友好的界面,使得标注过程更加直观和高效。用户可以轻松地加载视频,进行目标标注和跟踪。多目标标注:支持同时标注多个目标,用户可以为每个目标分配唯一的标识符,这对于多目标跟踪任务至关重要。动态调整:用户可以根据视频内容的变化,动态调整标注框的位置和大小,以适应目标的运动和变化。
2024-09-03 16:05:36 490
原创 基于lightglue的Homography estimation
在实验中,LightGlue被作为SuperGlue的替代方案,能够以更少的运行时间预测出强大的匹配结果。该方法的创新之处在于其智能计算的能力,通过内省机制和早期剔除无效点,极大地提高了模型的效率。在实际应用中,LightGlue展现了作为SuperGlue替代方案的潜力,特别是在处理速度和资源利用上。在该论文的方法部分中,作者提出了一种名为LightGlue的方法,并详细描述了其在视觉信息处理中的创新性。这篇论文的方法部分展现了作者对计算资源管理的创新思考,利用深度学习的方法实现了高效的2D图像匹配。
2024-08-27 14:56:33 301
原创 基于superglue的Homography estimation
SuperGlue方法通过将特征匹配问题视为在两组局部特征之间找到部分分配的问题,重新审视了基于图的经典匹配策略。它通过解决线性分配问题,将其松弛为一个可微分的最优传输问题,从而实现了特征匹配过程的端到端学习。核心方法:传统方法通常通过学习任务无关的局部特征,然后使用简单的匹配启发式方法和技巧来进行特征匹配。SuperGlue摒弃了这种方式,转而从预先提取的局部特征中学习匹配过程。
2024-08-22 17:44:57 534
原创 复现 LET-NET
稀疏光流法是计算机视觉中的一项基本任务。然而,它依赖于恒定的假设限制了其在高动态范围(HDR)场景中的适用性。在本研究中,我们提出了一种新的方法,旨在通过学习一个对光照变化具有鲁棒性的特征映射来超越图像的颜色信息。该特征图随后被构造成一个特征金字塔,并集成到稀疏的Lucas-Kanade(LK)光流中。通过采用这种混合光流方法,我们克服了亮度常数假设的限制。具体来说,我们利用一个轻量级的网络从图像中提取特征图和关键点。考虑到为浅层网络获得可靠的关键点的挑战,我们采用了一个额外的深度网络来支持训练过程。
2024-08-20 20:03:06 481
原创 基于RIFE的光流估计
RIFE,一种用于视频帧插值(VFI)的实时中间流估计算法。许多最近基于流动的VFI方法首先估计双向光流,然后将它们缩放和反转为近似的中间流,从而导致运动边界和复杂管道上的伪影。RIFE使用一个名为IFNet的神经网络,该神经网络可以直接估计从粗到细的中间流量,速度要快得多。RIFE 不依赖于预训练的光流模型,并且可以支持使用时间编码输入进行任意时间步长帧插值。与流行的 SuperSlomo 和 DAIN 方法相比,RIFE 快 4–27 倍,产生更好的结果。
2024-08-20 13:43:06 719
原创 使用RAFT的深度光流
光流是像素在图像序列中的表观运动。为了估计光流,场景中物体的运动必须具有相应的亮度位移。这意味着一张图像中移动的红球在下一张图像中应该具有相同的亮度和颜色,这使我们能够确定它在像素方面移动了多少。图 1 显示了一个光流示例,其中逆时针旋转的吊扇被一系列图像捕获。最右边的彩色图像包含了从第 1 帧到第 2 帧每个像素的明显运动轨迹,并进行了颜色编码,不同的颜色表示像素运动的不同水平和垂直方向。这就是密集光流估计的一个例子。密集光流估计为每个像素分配一个二维光流向量,描述其在时间间隔内的水平和垂直位移。
2024-08-19 14:30:57 1076
原创 角点检测——良好特征的跟踪功能
现在,考虑一下我们是否需要查看图像的角落或重要点的时间变化。我的意思是如果我们想随着时间的推移跟踪一些物体。是的,此时 GFTT 来帮助我们了。如果任何方向上的强度发生相当大的变化,GFTT 会将其标记为潜在的关键点。是的,我们几乎可以说它们是相同的。好的特征是必不可少的,因为它们为跟踪提供了稳定的点。GFTT:它不是根据阈值选择角点,而是选择具有最高特征值的前 N 个角点。blockSize:用于计算 Harris 角点响应的像素邻域的大小。如果提供,它指定将检测角点的区域。所有参数都会影响输出。
2024-08-19 10:53:54 857
原创 Affine Transformations仿射变换
仿射变换(Affine Transformation)是数学和计算机图形学中的一种线性变换,它包括了平移、旋转、缩放、剪切等操作。仿射变换保留了几何图形的“仿射性质”,即平行线在变换后仍然平行,线性组合在变换后仍然是线性组合,并且保持点的相对顺序和比例关系,但不一定保持角度和距离。在二维空间中,仿射变换可以用一个2×2的矩阵和一个2×1的平移向量来表示。具体来说,如果我们有一个点xy,其变换后的新位置x′y′可以通过以下公式得到:其中,矩阵acbd。
2024-08-19 10:16:35 774
原创 光流运动估计教程
让我们从对光流的高层次理解开始。光流是对象在序列的连续帧之间的运动,由对象和相机之间的相对运动引起。光流问题可以表示为:光流问题在连续帧之间,我们可以将图像强度 (I) 表示为空间 (x,y) 和时间 (t) 的函数。换句话说,如果我们获取第一张图像 I(x,y,t) 并在 t 时间内将其像素移动 (dx,dy),我们将获得新图像 I(x+dx,y+dy,t+dt) )。首先,我们假设物体的像素强度在连续帧之间是恒定的。光流的恒定强度假设其次,我们采用RHS的泰勒级数近似,并去除常用项。
2024-08-16 13:43:38 921
原创 使用光流进行相机运动估计
当我之前谈到不同的观点时,我的意思是在编写代码之前,我们需要弄清楚如何解释 panning 和 trucking 之间的区别。在这篇文章中,我们将使用平移和推车的示例来介绍区分移动的概念。对于其他组合(例如变焦和推车),可能需要采用不同的方法。卡车运输时,场景中的所有物体都以相同的速度移动。然而,在平移时,距离摄像机较近的物体移动速度比距离摄像机较远的物体快。因此,我们的想法是比较视频中不同物体的速度差异。如果差异高于某个阈值——视频就会发生平移,否则——卡车。它的效果出奇地好,但不幸的是也有其局限性。
2024-08-16 09:06:51 426
原创 基于danceTrack数据集进行精度评定
DanceTrack提供框和身份注释。它包含100个视频,40个用于训练(注释公共),25个用于验证(注释公共),35个用于测试(注释非公共)。DanceTrack是一个基准数据集,用于在统一的外观和不同的运动中跟踪多个对象。PS: 需要修改GT的目录和跟踪结果目录。PS: 请根据自己的代码进行修改。
2024-08-15 10:37:59 457
原创 实时目标跟踪类论文汇总
随着速度方向的变化,我们引入了置信度和高度状态作为潜在的弱线索。此外,通过强线索和弱线索,我们的方法Hybrid-SORT在不同的基准上取得了优越的性能,包括MOT17、MOT20、MOT20,特别是在舞蹈跟踪中,在复杂的运动中经常发生交互和严重的阻塞。在本文中,我们提出了一种新的鲁棒的最先进的跟踪器,它可以结合运动和外观信息的优点,以及相机运动补偿,和一个更精确的卡尔曼滤波状态向量。尽管只使用了一个熟悉的技术的基本组合,如卡尔曼滤波器和匈牙利算法的跟踪组件,这种方法实现了与最先进的在线跟踪器相当的精度。
2024-08-14 15:23:17 1111
原创 农业上的目标跟踪论文汇总
野外动态障碍物的多目标跟踪(MOT)是农业机器人实现动态避障的重要前提。农村地区复杂、不可预测的道路环境会对机器人造成严重的振动,影响摄像机的姿势,从而导致物体匹配错误。因此,我们提出了一种改进的方法,即深度感知观测中心简单在线实时跟踪(DA-OCSORT),其中包括两个新模块,即基于惯性测量单元(IMU)的相机运动补偿(ICMC)和深度感知(DA)。该方法可以利用IMU信息对摄像机的自我运动进行补偿,并通过物体深度信息进行多维匹配,从而最大限度地减少摄像机运动对跟踪过程的影响。
2024-08-13 13:41:38 1070
原创 基于姿态的多目标跟踪论文代码汇总
在本文中,我们提出了一个简单而有效的框架,称为光跟踪,用于在线人体姿态跟踪。现有的方法通常在顺序阶段进行人工检测、姿态估计和跟踪,其中姿态跟踪视为离线二部匹配问题。我们提出的框架被设计为通用的、高效的和真正的在线的方法。为了提高效率,单人姿态跟踪(SPT)和视觉对象跟踪(VOT)被合并为一个统一的在线功能实体,很容易由一个可替换的单人姿态估计器实现。为了降低离线优化成本,该框架还将SPT与在线身份关联联系起来,并首次阐明了多人关键点跟踪与多目标对象跟踪(MOT)的桥梁。
2024-08-12 11:16:36 980
原创 基于danceTrack相关论文代码列表
虽然这种假设对于非常短的闭塞时间是可以接受的,但对长时间运动的线性估计可能是非常不准确的。在这项工作中,我们证明了一个基本的卡尔曼滤波器仍然可以获得最先进的跟踪性能,如果采取适当的注意来修复在遮挡期间积累的噪声。我们不仅仅依赖于线性状态估计(即以估计为中心的方法),而是使用目标观测(即目标检测器的测量)来计算遮挡周期内的虚拟轨迹,以确定遮挡期间滤波器参数的误差积累。我们将我们的方法命名为以观察为中心的SORT(OC-SORT)。它仍然是简单的、在线和实时的,但提高了在遮挡和非线性运动时的鲁棒性。
2024-08-08 17:10:37 341
原创 SORT复现(python)
通过结合目标检测和目标跟踪,可以实现对动态场景中目标物体的实时定位和跟踪,为许多实际应用提供了重要的支持。目标跟踪:根据目标匹配的结果,进行目标跟踪。然后,通过比较目标的特征向量来匹配目标,在不同帧之间建立目标的对应关系。目标特征提取:在检测到目标之后,对目标物体进行特征提取,一般会使用卷积神经网络(CNN)来提取目标的特征向量。更新目标模型:在跟踪过程中,随着目标物体的运动和外观变化,可能需要根据新的检测结果和跟踪信息来更新目标的模型和特征描述,以提高跟踪的准确性和稳定性。首先查找该动态库文件地址。
2024-08-05 14:46:15 520
原创 局部路径规划论文汇总
局部规划是移动机器人实现完全自主的关键技术之一,已得到广泛的研究。为了统一、全面的评价移动机器人局部规划方法,本文提出了一种移动机器人局部规划基准MRPB 1.0。基准促进运动规划研究人员想要比较新的性能本地规划师相对于许多其他先进的方法以及终端用户在移动机器人行业想要选择一个本地规划表现最好的一些感兴趣的问题。我们精心设计了各种模拟场景,以挑战本地规划者的适用性,包括大规模、部分未知和动态的复杂环境。
2024-08-01 14:23:24 233
原创 基于地理面矢量的虚拟围栏
虚拟围栏(Geofencing)技术在多个领域有广泛应用,包括无人机飞行限制、车辆监控与管理、人员安全监控、儿童和宠物定位、营销与广告、智能家居与安防、自然保护区与动物监控、健康与健身应用、物流与仓储管理及交通管理,通过设定虚拟边界,当设备或人员进入或离开指定区域时自动触发相应的操作,提高了自动化、智能化和安全性。
2024-07-30 16:12:23 132
原创 动态环境下的激光slam论文列表
现有的基于三维点的动态点检测和去除方法具有显著的时间开销,使其难以适应激光雷达-惯性测程系统。本文提出了一种基于标签一致性的动态点检测和去除方法,用于处理自动驾驶场景中的移动车辆和行人,并将所提出的动态点检测和去除方法嵌入到一个自设计的激光雷达-惯性测程系统中。在三个公共数据集上的实验结果表明,我们的方法可以在LIO系统中以极低的计算开销(即1∼9ms)完成动态点检测和去除,同时实现与最先进的方法相当的保存率和拒绝率,显著提高了姿态估计的精度。我们已经发布了这项工作的源代码。
2024-07-16 17:54:51 925
原创 基于SAM的零样本相似性评价方法
图像转换具有广泛的应用,如风格转换和模态转换,通常是生成具有高度真实和忠实的图像。这些问题仍然很困难,特别是在保存语义结构很重要的时候。传统的图像级相似性度量的用途有限,因为图像的语义是高级的,并且不受对原始图像的像素级忠实度的严格控制。为了填补这一空白,我们引入了SAMScore,这是一种通用的语义结构相似性度量,用于评估图像翻译模型的忠实度。SAMScore是基于最近的高性能段任意事物模型(SAM),该模型可以以突出的准确性进行语义相似性比较。
2024-07-10 15:15:12 553
原创 4DRadarSLAM算法复现
4D毫米波雷达SLAM(Simultaneous Localization and Mapping,即同时定位与建图)是一种利用4D毫米波雷达传感器来进行环境感知并构建地图的技术。4D毫米波雷达不仅能够测量目标物体的距离和角度,还能够获取速度和高度信息,从而提供更丰富的环境感知数据。4D毫米波雷达在传统毫米波雷达的基础上,增加了对目标物体高度和速度的测量,即除了传统的3D信息(距离、方位角和俯仰角)外,还能提供速度和高度信息。这增加了雷达的环境感知能力,使其在复杂环境下也能有效工作。
2024-07-10 14:19:23 444
原创 基于openStreetMap的路径规划ROS功能包
OpenStreetMap (OSM) 是一个自由、开放的在线地图项目,其目标是创建一个免费的、可编辑的世界地图。具体流程参考https://py1995.blog.csdn.net/article/details/138162392。存在一些使用问题,不是那么方便,我对其进行了一些修改,便于进行起点到终点进行路径规划。在带有GPS传感器的多传感器融合slam的程序中,添加以下代码。在 ./config/ros_param.yaml中进行配置。设置终点:点击rviz中的按键“2D Nav Goal”
2024-07-08 17:09:33 146
原创 目标跟踪中的数据关联
基于特征余弦相似度的数据关联是一种在目标跟踪和多目标检测中广泛应用的方法,特别适用于外观特征(如颜色、纹理、深度特征等)稳定且区分度高的场景。基于IOU(Intersection over Union)的数据关联是一种在目标跟踪中特别常见的方法,主要用于视频目标跟踪和多目标检测的后处理阶段。目标跟踪中的数据关联是指在多目标跟踪任务中,将传感器在不同时间点获取的观测数据正确地分配给各个目标的过程。新目标的识别和旧目标的丢失:需要识别出新出现的目标,并判断是否有目标消失或被遮挡。
2024-07-02 10:51:02 160
原创 基于lio-sam的重定位和增量式建图
为了复用上个生命周期录制的轨迹,我需要用到重定位功能,现有的开源方案中,可以实现该功能,但存在以下问题:在预先构建的地图之外,无法实现定位功能。只在初始化原点位姿的时候,进行重定位,使得当前生命周期内的原点和预先构建的地图原点一致,后续操作和lio-sam一样。在rviz中添加2d pose estimate。初始化后进行增量建图。
2024-06-28 15:27:17 215
原创 基于强化学习的目标跟踪论文合集
目标跟踪是遥感领域空间地球观测的重要研究方向。虽然现有的基于相关滤波器和基于深度学习(DL)的目标跟踪算法取得了很大的成功,但对于目标遮挡问题仍然不能令人满意。由于背景的复杂变化而造成的遮挡和跟踪镜头的偏差,导致物体信息丢失,从而导致检测的遗漏。传统上,被遮挡下的目标跟踪方法大多采用复杂的网络模型,对被遮挡对象进行重新检测。为了解决这个问题,我们提出了一种新的目标跟踪方法。首先,建立了一个基于深度强化学习(DRL)的动作决策-遮挡处理网络(AD-OHNet),以实现遮挡下目标跟踪的低计算复杂度。
2024-06-21 16:09:29 1427
原创 基于欧式距离的匈牙利匹配跟踪器(C++)
基于欧式距离的匈牙利匹配跟踪器是一种在目标跟踪领域常用的算法。它通常用于解决多目标跟踪中的匹配问题,其中需要将当前帧中的检测目标与上一帧中已知的目标进行匹配。算法步骤大致如下:特征提取:对检测到的目标和已知的目标进行特征提取,通常使用目标的位置信息或其他特征向量表示目标。计算距离矩阵:使用欧式距离或其他距离度量方法计算每个检测目标与每个已知目标之间的距离,得到一个距离矩阵。匈牙利匹配:通过解决最小权重匹配问题来确定最佳的匹配方案。
2024-06-20 16:49:46 109
原创 匈牙利匹配算法的例子
匈牙利匹配算法,也称为匈牙利算法或Kuhn-Munkres算法,是一种用于解决二分图中的最大权匹配或最小权匹配问题的多项式时间算法。二分图匹配问题二分图:一个图,其中顶点集可以分为两个不相交的子集,使得每条边连接的顶点分别来自不同的子集。匹配:在图中找到一组边,使得每个顶点至多属于一条边。最大权匹配:在权重图中找到一个匹配,使得所选边的权重和最大。最小权匹配:在权重图中找到一个匹配,使得所选边的权重和最小。匈牙利算法是一种用于解决上述匹配问题的有效算法,特别是在二分图中。它的时间复杂度是O。
2024-06-18 14:21:45 246
原创 重定位相关论文汇总
多传感器的融合可解决传感器的非线性和不确定性问题,针对 GPS 和 SLAM在复杂环境下无法单独为无人车提供准确定位的问题,提出一种基于点云地图匹配的重定位算法,通过融合地图匹配定位及 GPS 定位结果获取无人车的准确位姿信息。本文主要分为 4 个部分:(1) 根据无人驾驶平台,构建基于激光雷达重定位硬件与软件系统。研究了三维激光雷达数据处理和多传感器同步算法,具体包括激光传感器位置标定、点云数据噪点滤除、点云畸变校正、多传感器数据同步,最后实现了多个传感器在时间和空间维度上的同步。
2024-06-07 14:17:17 313
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人