问题描述:
Given an integer array nums, find the sum of the elements
between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5]sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
针对指定区间返回区间和,并能修改各区间的数值。
线段树
这个问题可以很好的利用线段树来求解,每个节点存放起始到终点区间的元素之和。
线段树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)。
性质:父节点的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的最少2倍、最多3倍。
问题求解
针对上述数组区间和问题,每个节点保存区间内元素和,使用一个数组实现区间树(也可以使用指针动态方式实现)。
struct Node{
int left;
int right;
int sum;
Node():left(0),right(0),sum(0){}
Node(int l, int r, int s):left(l),right(r),sum(s){}
};
//线段树实现的数组
vector<Node> SegTree;
需要的操作分别有创建、查询、更新元素。分别实现如下。
创建利用递归方式进行,参数seg为当前创建节点的下标,s和e分别为数组nums当前创建的区间起始于终点下标。
void construct(vector<Node> & segTree, int seg, int s, int e, vector<int>& nums)
{
if (s == e) segTree[seg] = Node(s, e, nums[s]);
else
{
construct(segTree, 2*seg + 1, s, (s+e) / 2, nums);
construct(segTree, 2*seg + 2, (s+e) / 2 + 1, e, nums);
int segSum = segTree[2*seg + 1].sum + segTree[2*seg+2].sum;
segTree[seg] = Node(s, e, segSum);
}
}
调用方式为:
construct(SegTree, 0, 0, nums.size()-1, nums)
查询区间和:
int sumRange(int i, int j) {
return sumRangeHelper(0, i, j);
}
int sumRangeHelper(int root, int i, int j)
{
if (SegTree[root].left == i && SegTree[root].right == j) return SegTree[root].sum;
int leftBound = (SegTree[root].left + SegTree[root].right) / 2;
if (j <= leftBound)
{
return sumRangeHelper(2 * root + 1, i, j);
}
else if (i > leftBound)
{
return sumRangeHelper(2 * root + 2, i, j);
}
else
{
int lsum = sumRangeHelper(2 * root + 1, i, leftBound);
int rsum = sumRangeHelper(2 * root + 2, leftBound + 1, j);
return lsum + rsum;
}
}
查询区间为i
到j
之间的元素之和,利用辅助函数递归调用,主要在于判断下标范围。
最后,需要更新某个元素之值,然后将线段树各个节点保存的和一并进行更新:
void update(int i, int val)
{
updateHelper(0, i, val);
}
void updateHelper(int root, int i, int val)
{
if (SegTree[root].left == SegTree[root].right)
{
SegTree[root].sum = val;
return;
}
int lb = (SegTree[root].left + SegTree[root].right) / 2;
int lc = 2 * root + 1, rc = lc + 1;
if (i <= lb)
{
updateHelper(lc, i, val);
}
else
{
updateHelper(rc, i, val);
}
SegTree[root].sum = SegTree[lc].sum + SegTree[rc].sum;
}