线段树应用

问题描述:

Given an integer array nums, find the sum of the elements
between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

针对指定区间返回区间和,并能修改各区间的数值。

线段树

这个问题可以很好的利用线段树来求解,每个节点存放起始到终点区间的元素之和。
线段树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)。
性质:父节点的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的最少2倍、最多3倍。

问题求解

针对上述数组区间和问题,每个节点保存区间内元素和,使用一个数组实现区间树(也可以使用指针动态方式实现)。

struct Node{
        int left;
        int right;
        int sum;
        Node():left(0),right(0),sum(0){}
        Node(int l, int r, int s):left(l),right(r),sum(s){}
};
//线段树实现的数组
vector<Node> SegTree;

需要的操作分别有创建、查询、更新元素。分别实现如下。
创建利用递归方式进行,参数seg为当前创建节点的下标,s和e分别为数组nums当前创建的区间起始于终点下标。

void construct(vector<Node> & segTree, int seg, int s, int e, vector<int>& nums)
{
    if (s == e) segTree[seg] = Node(s, e, nums[s]);
    else
    {
        construct(segTree, 2*seg + 1, s, (s+e) / 2, nums);
        construct(segTree, 2*seg + 2, (s+e) / 2 + 1, e, nums);
        int segSum = segTree[2*seg + 1].sum + segTree[2*seg+2].sum;
        segTree[seg] = Node(s, e, segSum);
    }
}

调用方式为:

construct(SegTree, 0, 0, nums.size()-1, nums)

查询区间和:

int sumRange(int i, int j) {
    return sumRangeHelper(0, i, j);
}
int sumRangeHelper(int root, int i, int j)
{
    if (SegTree[root].left == i &&  SegTree[root].right == j) return SegTree[root].sum;

    int leftBound = (SegTree[root].left + SegTree[root].right) / 2;
    if (j <= leftBound)
    {
        return sumRangeHelper(2 * root + 1, i, j);
    }
    else if (i > leftBound)
    {
        return sumRangeHelper(2 * root + 2, i, j);
    }
    else
    {
        int lsum = sumRangeHelper(2 * root + 1, i, leftBound);
        int rsum = sumRangeHelper(2 * root + 2, leftBound + 1, j);
        return lsum + rsum;
    }
}

查询区间为ij之间的元素之和,利用辅助函数递归调用,主要在于判断下标范围。

最后,需要更新某个元素之值,然后将线段树各个节点保存的和一并进行更新:

void update(int i, int val)
{
    updateHelper(0, i, val);
}
void updateHelper(int root, int i, int val)
{
    if (SegTree[root].left == SegTree[root].right)
    {
        SegTree[root].sum = val;
        return;
    }

    int lb = (SegTree[root].left + SegTree[root].right) / 2;
    int lc = 2 * root + 1, rc = lc + 1;
    if (i <= lb)
    {
        updateHelper(lc, i, val);
    }
    else
    {
        updateHelper(rc, i, val);
    }
    SegTree[root].sum = SegTree[lc].sum + SegTree[rc].sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值