源点s连接 每个点,权值为Ai,此点在连接汇点t,权值为Bi;之后点 每组输入的 两点 连接无向边,即正向边和反向边都存权值。求最小割,即最大流,即为答案
自己画图感受一下吧!!
#include<stdio.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
int n,m;
int ans,res;
struct node{
int b,len;
}edge[500000]; //边数组
int ne;
vector<int> f[500000];//f[i]存i点相连的边的 下标,此下标取^,即为反向边的下标
int d[20050];
void addedge(int a,int c,int d1,int d2)
{
edge[ne].b=c;
edge[ne].len=d1;
f[a].push_back(ne);
ne++;
edge[ne].b=a;
edge[ne].len=d2;
f[c].push_back(ne);
ne++;
}
bool bfs()//bfs()分层
{
queue<int> q;
memset(d,-1,sizeof(d));
d[0]=0;
q.push(0);
while(!q.empty()){
int u=q.front();
q.pop();
int l=f[u].size();
for(int i=0;i<l;i++){
if(edge[f[u][i]].len > 0 && d[edge[f[u][i]].b] < 0){
d[edge[f[u][i]].b] = d[u] +1;
q.push(edge[f[u][i]].b);
}
}
}
if(d[n+1]>0) return 1;
else return 0;
}
int dfs(int u,int max)//dfs()处理
{
int a,i,dt=max;
if(u==n+1 || max==0) return max;
int l=f[u].size();
for(i=0;i<l;i++){
if(edge[f[u][i]].b > 0 && d[edge[f[u][i]].b]==d[u]+1 && (a=dfs(edge[f[u][i]].b,min(dt,edge[f[u][i]].len))))
{
edge[f[u][i]].len -= a;
edge[f[u][i]^1].len += a;
dt-=a;
if(dt==0) break;
}
}
return max-dt;
}
int main()
{
int i,j,k;
while(scanf("%d%d",&n,&m)!=EOF){
ne=0;
for(i=0;i<n+2;i++)
f[i].clear();
memset(edge,0,sizeof(edge));
for(i=1;i<=n;i++){
int a,b;
scanf("%d%d",&a,&b);
addedge(0,i,a,0);
addedge(i,n+1,b,0);
}
for(i=1;i<=m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c,c);
}
ans=0;
while(bfs()){//dinic算法
while(res=dfs(0,99999999)){
ans += res;
}
}
printf("%d\n",ans);
}
}