编号为1至10的十个水果盘中,每盘都盛有水果,共盛放100个.其中,第一盘里有16个,并且编号相邻的三个水果盘中水果数的和相等,问第8盘中水果最多可能是多少个?
题目分析:
步骤一:
“第一盘里有16个,编号相邻的三个水果盘中水果数的和相等”,相当于做等量分割。满足这个条件需要。
1盘数=4盘数=7盘数=10盘数都放入16个
步骤二:
1盘数+2盘数+3盘数=2盘数+3盘数+4盘数=3盘数+4盘数+5盘数=5盘数+6盘数+7盘数。。。
步骤三:
1盘数,4盘数,7盘数,10盘数都是16个,所以有
100-16*4=36个
目前2盘数+3盘数,5盘数+6盘数,8盘数+9盘数,总共为36个。
同时需要满足“编号相邻的三个水果盘中水果数的和相等”,可以推测
2盘数+3盘数=5盘数+6盘数=8盘数+9盘数
将36分成3份,那么可以知道:2盘数+3盘数=12个
步骤四:
由于要满足,“编号相邻的三个水果盘中水果数的和相等”。
必然是前后数交替,2盘数=5盘数=8盘数,3盘数=6盘数=9盘数。
由于每个盘子至少有1个水果,那么第8盘中水果最多可能是11个。
规划如下:
1盘数=4盘数=7盘数=10盘数=16个,2盘数=5盘数=8盘数=11个,3盘数=6盘数=9盘数=1个。