Unique Paths

机器人位于一个m x n网格的左上角,只能向下或向右移动。问题求解从起点到终点的不同路径数量。当m和n最大为100时,可以通过组合数学的方法,计算出所有可能的路径总数。路径计数涉及到组合数C(m+n-2, n-1),也可以理解为D和R的可重排列问题,最后除以D和R的阶乘。代码实现中需要注意中间计算结果可能导致整数溢出,可使用double类型避免。" 132465478,19694693,OpenCASCADE中的VDrawSphere性能评估与优化,"['C/C++', 'CAD', '图形学', '性能优化']
摘要由CSDN通过智能技术生成

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

题意:算机器人从(1,1)走到(3,7)这个坐标的可能路线数,这里为方便假设以向下和下右为正方向,坐标以 (行,列) 的形式

注意机器人其实是进行了m-1次下移和n-1次的右移,还有m和n至多为100

思路:这道题如果联系上组合数学里的格路模型会非常简单

可以这样想,机器人一共走了 m+n-2步,其中有m-1步下移和n-1步右移,所以总的路线数就是组合数C(m+n-2, n-1)或者C(m+n-2, m-1)

这里再说一种个人觉得更加好理解的解释

假设向下走记为"D",向右走记为"R",那么这道题相当于算m-1个D和n-1个R的排列数

但要注意的是这里D和R是个可重排列的问题,所以要除以两个数的重复度

所以结果是result = P(m+n-2, m+n-2) / (m-1)! / (n-1)!

有了数学理论的指导代码就很简单了,这里需要注意的是问题规模组合数C(198, 99)不会超过int型的范围,但计算过程中间结果可能会溢出,可以先用double暂存最后再转成int

public int uniquePaths(int m, int n) {
        if (m == 0 || n == 0) {
        	return 0;
        }
        if (m == 1 || n == 1) {
        	return 1;
        }
        m--;
        n--;
        return combination(m+n, n);
    }
	
	//算组合数的函数C(m, n)
	int combination(int m, int n) {
		if (n == 0 || m == 0 || n == m) {
			return 1;
		}
		double result = 1;
		for (int i=m; i>=m-n+1; i--) {
			result *= i;
			result /= m-i+1;
		}
		return (int) Math.ceil(result);
	}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值