题目:
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
解题思路:
设一共有n个节点,可能的unique BST 为DP(n)。跟节点可以是任意一个元素,如第i个元素。根节点左侧为1~i-1个元素,右侧为第i+1到第n个元素。而左侧又是一个 i-1 个数的一个子树可以以任意一个0~i-1 的数字为根节点。所以左右子树的可能为DP(i-1)*DP(n-i)种可能。所以每个DP(n) 用前面的DP的值计算得来。而每个DP又循环每个值作为根相加。
DP(0) = 1; DP(1) = 1;
代码如下:
class Solution {
public:
int numTrees(int n) {
int DP[n+1];
DP[0] = 1;
DP[1] = 1;
for(int i = 2; i <= n; ++i){
DP[i] = 0;
}
for(int i = 2; i <= n; ++i){
for(int j = 1; j <=i; ++j){
DP[i] += DP[j-1] * DP[i-j];
}
}
return DP[n];
}
};
注意DP中的元素初始化为0,以为后面要累加。