文章目录
一. 线性规划问题的数学模型
1.1 例子
1.1.1 例1
设四个角截去的小正方形边长为X.
则有盒子的体积为:
V
=
(
a
−
2
X
)
∗
(
a
−
2
X
)
∗
X
=
a
2
X
−
4
a
X
2
+
4
X
3
V=(a-2X)*(a-2X)*X =a^2X-4aX^2+4X^3
V=(a−2X)∗(a−2X)∗X=a2X−4aX2+4X3
V
’
=
a
2
−
8
a
X
+
12
X
2
=
(
a
−
2
X
)
∗
(
a
−
6
X
)
V’=a^2-8aX+12X^2 =(a-2X)*(a-6X)
V’=a2−8aX+12X2=(a−2X)∗(a−6X)
令V’=0得:X1=a/2; X2=a/6
又:V”= -8a+24X
当X1=a/2时,V”= 4a>0,V有极小值0;
当X2=a/6时,V”= -4a<0,V有极大值:
V极大=(2/27)a^3
1.1.2 例2
1.1.3 例3
例3区别于例1和例2,已经转换为了标准的数学公式
1.1.4 例4
通过矩阵来求最优解
1.2 线性规划的数学模型概要
三要素:
二. 线性规划的解
求解方法
图解法有点类似几何的解法
单纯形法有点类似代数的解法
2.1 图解法
2.2 单纯形法
2.2.1 基本原理
2.2.2 从一个简单例子入手
2.3 解的类型
2.3.1 初始基本可行解的确定
最优性检验:
总结计算步骤:
2.3.2 例子
四. 线性规划模型的应用
4.1 案例:公交车司机
4.2 案例:生产计划问题
4.3 案例:套载下料问题
目标函数:
Min x1 + x2 + x3 + x4
约束条件:
3x1 + 2x2 + 3x3 + 0x4 >= 100
0x1 + 2x2 + 4x3 + 6x3 >= 200
x1,x2,x3,x4 >= 0
参考:
- http://www.dataguru.cn/article-5747-1.html