大数据算法系列11:线性规划

14 篇文章 1 订阅

一. 线性规划问题的数学模型

image.png

1.1 例子

1.1.1 例1

image.png

设四个角截去的小正方形边长为X.
则有盒子的体积为:
V = ( a − 2 X ) ∗ ( a − 2 X ) ∗ X = a 2 X − 4 a X 2 + 4 X 3 V=(a-2X)*(a-2X)*X =a^2X-4aX^2+4X^3 V=(a2X(a2X)X=a2X4aX2+4X3

V ’ = a 2 − 8 a X + 12 X 2 = ( a − 2 X ) ∗ ( a − 6 X ) V’=a^2-8aX+12X^2 =(a-2X)*(a-6X) V=a28aX+12X2=(a2X)(a6X)
令V’=0得:X1=a/2; X2=a/6
又:V”= -8a+24X
当X1=a/2时,V”= 4a>0,V有极小值0;
当X2=a/6时,V”= -4a<0,V有极大值:
V极大=(2/27)a^3

1.1.2 例2

image.png

image.png

1.1.3 例3

例3区别于例1和例2,已经转换为了标准的数学公式
image.png

image.png

1.1.4 例4

通过矩阵来求最优解
image.png

1.2 线性规划的数学模型概要

三要素:
image.png
image.png

image.png

image.png

image.png

image.png

image.png

二. 线性规划的解

求解方法
图解法有点类似几何的解法
单纯形法有点类似代数的解法
image.png

2.1 图解法

image.png
image.png

2.2 单纯形法

2.2.1 基本原理

image.png
image.png
image.png

2.2.2 从一个简单例子入手

image.png
image.png

2.3 解的类型

image.png

2.3.1 初始基本可行解的确定

image.png

最优性检验:
image.png

总结计算步骤:
image.png

2.3.2 例子

image.png

image.png

image.png

image.png

四. 线性规划模型的应用

image.png

4.1 案例:公交车司机

image.png

image.png

4.2 案例:生产计划问题

image.png
image.png
image.png

4.3 案例:套载下料问题

image.png

目标函数:
Min x1 + x2 + x3 + x4

约束条件:
3x1 + 2x2 + 3x3 + 0x4 >= 100
0x1 + 2x2 + 4x3 + 6x3 >= 200
x1,x2,x3,x4 >= 0

参考:

  1. http://www.dataguru.cn/article-5747-1.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值