大数据开发之Hive案例篇5- count(distinct) 优化一例

一. 问题描述

需求:
4895708a4e03a6ab96b34ae81456e58.png

卡在了reduce,只有一个reduce
MR job卡在了最后一个reduce,任务迟迟未运行成功
image.png

二. 解决方案

2.1 调整reduce个数

一般一个reduce处理的数据是1G,所以首先想能不能增加reduce的个数来调优上述Hive SQL。

-- 可以指定每个redcue处理的数据size,也可以直接指定reduce的个数
set hive.exec.reducers.bytes.per.reducer = 12000000;

经验证,调整了上述参数后,问题依旧没有得到解决。

2.2 SQL改写

上述SQL所代表的业务逻辑是求截止当前每分钟的用户访问数(如出现多次,只算一次)
SQL也是因为 count(distinct)的存在,导致reduce数分配少了,进而出现数据性能问题。

所以首先我们想想能不能把count(distinct)去掉
因为本身是离线数据,此时可以借助临时表,首先把每个用户首次访问的时间记录下来,这样就可以将处理的数据大大减少,最后再通过开窗函数处理即可。
完美解决:
image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值