PCA
- 非监督
- 利用协方差矩阵寻找投射函数 ω使得投射到低维空间后的最大离散(方差)
- 使用拉格朗日解不等式
- 根据求得的特征值进行特征向量的选择
- 一般求信息率90%以上的特征向量集
- 对于N远大于D的数据,使用SVD(奇异值)进行求解
- 先进行一次自乘降维再进行训练
LDA
- 监督性
- 寻求使得类内方差最小并且类间差异性最大的投射空间
SOM
- 聚类方法
- 取差异性对周围范围的邻居进行更新
MDS
- 非监督降维
- 注重数据的相对距离(关系),有利于流型数据的降维和可视化
- 但对原数据整体结构破坏严重
- 三个基本步骤:
- 计算stress
- 更新投射函数
- 检查disparity
ReliefF
- ReliefF处理多分类的情况,Relief只能处理两分类
- 用于对特征进行赋权,通过权值进行过滤
- 算法输入: 数据集D, 包含c类样本,子集采样数m,权值阈值 δ , kNN系数k
- 算法步骤:
- initial W(Ai)=0 ;
- for 1 to m, sample x from D:
- label of x is y
- form dataset H and M, k near-hit (Hj,j=0,1,2...k