高维数据处理

本文详细介绍了几种高维数据处理方法,包括PCA(主成分分析)的非监督降维,利用协方差矩阵和SVD求解;LDA(线性判别分析)的监督降维,目标是最大化类间差异性和最小化类内方差;SOM(自组织映射)的聚类方法,通过差异性更新邻居;MDS(多维尺度分析)用于流型数据降维和可视化;ReliefF算法对特征赋权,适用于多分类问题;以及LLE和ISOMAP在处理流形数据时的应用。
摘要由CSDN通过智能技术生成

PCA

  • 非监督
  • 利用协方差矩阵寻找投射函数 ω使
  • 使用拉格朗日解不等式
  • 根据求得的特征值进行特征向量的选择
  • 一般求信息率90%以上的特征向量集
  • 对于N远大于D的数据,使用SVD(奇异值)进行求解
  • 先进行一次自乘降维再进行训练

LDA

  • 监督性
  • 寻求使得类内方差最小并且类间差异性最大的投射空间

SOM

  • 聚类方法

- 取差异性对周围范围的邻居进行更新

MDS

  • 非监督降维
  • 注重数据的相对距离(关系),有利于流型数据的降维和可视化
  • 但对原数据整体结构破坏严重
  • 三个基本步骤:
    • 计算stress
    • 更新投射函数
    • 检查disparity

ReliefF

  • ReliefF处理多分类的情况,Relief只能处理两分类
  • 用于对特征进行赋权,通过权值进行过滤
    • 算法输入: 数据集D, 包含c类样本,子集采样数m,权值阈值 δ , kNN系数k
    • 算法步骤:
      1. initial W(Ai)=0 ;
      2. for 1 to m, sample x from D:
        1. label of x is y
        2. form dataset H and M, k near-hit (Hj,j=0,1,2...k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值