已知二叉树的中序和前序序列(或后序)求解树

本文介绍了如何通过已知的二叉树中序和前序序列(或后序序列)来构建二叉树。方法主要包括确定根节点、求解子树并递归构建,直到所有节点定位完成。举例说明了具体步骤,例如给定中序序列HLDBEKAFCG和后序序列LHDKEBFGCA,逐步解析构建过程。
摘要由CSDN通过智能技术生成

转自:http://www.cnblogs.com/bmrs/archive/2010/08/19/SloveTree.html

这种题一般有二种形式,共同点是都已知中序序列。如果没有中序序列,是无法唯一确定一棵树的,证明略。

一、已知二叉树的前序序列和中序序列,求解树。

1、确定树的根节点。树根是当前树中所有元素在前序遍历中最先出现的元素。

2、求解树的子树。找出根节点在中序遍历中的位置,根左边的所有元素就是左子树,根右边的所有元素就是右子树。若根节点左边或右边为空,则该方向子树为空;若根节点左边和右边都为空,则根节点已经为叶子节点。

3、递归求解树。将左子树和右子树分别

二叉树前序遍历顺序为:根节点、左子、右子中序遍历顺序为:左子、根节点、右子。可以利用这两个遍历顺序构建出二叉树,然后再进行后序遍历即可。 具体步骤如下: 1. 根据前序遍历找到根节点,将中序遍历分成左子和右子两部分。 2. 对左子和右子分别递归进行步骤1,直到子只有一个节点或为空。 3. 按照左子、右子、根节点的顺序进行后序遍历。 下面是Python实现代码: ```python class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None def buildTree(preorder, inorder): if not preorder or not inorder: return None root = TreeNode(preorder[0]) index = inorder.index(root.val) root.left = buildTree(preorder[1:index+1], inorder[:index]) root.right = buildTree(preorder[index+1:], inorder[index+1:]) return root def postorderTraversal(root): if not root: return [] stack1 = [root] stack2 = [] while stack1: node = stack1.pop() stack2.append(node) if node.left: stack1.append(node.left) if node.right: stack1.append(node.right) res = [] while stack2: res.append(stack2.pop().val) return res preorder = [1, 2, 4, 5, 3, 6, 7] inorder = [4, 2, 5, 1, 6, 3, 7] root = buildTree(preorder, inorder) print(postorderTraversal(root)) # [4, 5, 2, 6, 7, 3, 1] ``` 其中,buildTree函数用于构建二叉树,postorderTraversal函数用于进行后序遍历。以上代码输出[4, 5, 2, 6, 7, 3, 1],即为二叉树后序遍历结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值