机器学习实用指南
文章平均质量分 91
机器学习经典案例及源码;实用机器学习训练数据集;
suoge223
工学博士,高级工程师,多个平台专家博主,专注于计算机解决各类工程问题:有限元软件开发,振动信号处理,工程设备力学热学仿真分析;擅长编程语言:matlab,python,C/C++
展开
-
【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
有许多令人兴奋且有价值的计算机视觉任务。例如,假设我们有一个项目,我们想要使用配备摄像头的无人机和计算机视觉在森林中寻找失踪的人。或者也许我们需要找到一些小东西,并且我们有一台高质量的相机。在这种情况下,我们可以在数据集中获得高分辨率图像。然而,大多数 CV 模型会降低图像分辨率,因为它有助于提高速度(训练和推理),并且通常不需要非常高分辨率来检测对象。然而,在我们的例子中,我们确实需要全分辨率,因为我们将使用配备摄像头的无人机进行搜索。这意味着即使是人也会在我们的图像中显示为微小的物体。我们如何完原创 2024-02-17 12:45:28 · 1544 阅读 · 12 评论 -
【机器学习案例6】使用机器学习从图像中提取突出的颜色(含源码)
机器学习目的:给定一张图像,我们想要从中提取 6 种突出的颜色。原创 2024-02-16 19:27:14 · 756 阅读 · 12 评论 -
【机器学习案例5】语言建模 - 最常见的预训练任务一览表
自监督学习 (SSL) 是基于 Transformer 的预训练语言模型的支柱,该范例涉及解决有助于建模自然语言的预训练任务 (PT)。本文将所有流行的预训练任务放在一起,以便我们一目了然地评估它们。原创 2024-02-16 16:57:45 · 1083 阅读 · 0 评论 -
【开源训练数据集3】Top3人脸数据集及其使用方法-计算机视觉应用
在本文中,我介绍了三个最流行的人脸数据集,您可以使用它们来构建自己的人脸识别和人脸检测模型:CelebFaces、FFHQ 和 LFW。我展示了可以帮助您检索数据集并在模型代码中使用它们的技术细节。我希望这能让您在下一个计算机视觉项目中取得领先。原创 2024-02-15 10:48:51 · 1056 阅读 · 12 评论 -
【机器学习案例4】为机器学习算法编码分类数据【含源码】
在这篇文章中,我们介绍了将分类数据转换为数值数据的编码方法,以便能够将其用作机器学习模型中的特征!在现实生活中,收集的原始数据很少采用我们可以直接用于机器学习模型的格式,即数值型数据。因此,需要进行一些预处理,以便以正确的格式呈现数据、选择信息丰富的数据或降低其维度,以便能够最大限度地提取数据。在这篇文章中,我们将讨论对原始数据的编码方式,以便能够使用分类数据作为我们的 ML 模型的特征,还将讨论数据编码的类型以及对应的适用条件!原创 2024-02-15 10:21:50 · 1736 阅读 · 0 评论 -
【机器学习案例3】从科学论文图片中提取标题、作者和摘要【含源码】
在这个项目中,我的目标是从科学论文图片中提取某些部分(标题、作者和摘要)。预期提取部分是科学论文中常见的部分,例如标题、摘要和作者。输入与最终结果。我的输入是将第一页纸转换成图像。最终结果是一个 txt 文件,其中包含标题、作者和摘要部分,如下图1和图2所示。我将使用 UNet 来了解在哪里可以找到这些部分,然后将训练学到的信息传递到 OCR 中。原创 2024-02-14 19:31:47 · 1455 阅读 · 0 评论 -
如何设置 iPad 进行机器学习开发
如果您有iPad并想将其用作开发工具,则只需完成5个步骤即可使用。在本指南中,您将学习如何:在云中设置一个实例,购买ssh客户端,设置 ssh,连接到服务器借助Wazaterm,您可以在浏览器中使用 Linux 终端。原创 2024-02-14 18:40:55 · 862 阅读 · 0 评论 -
初学者入门机器学习 (ML)的推荐教程
了解基本的机器学习概念并不难。有大量免费的在线博客文章、视频和编码教程可以引导您了解基础知识——从介绍性内容到常见应用程序,再到算法和应用技能。这篇文章总结了一些用于介绍 ML 的最佳免费选项。它按逻辑顺序排列,每个概念都建立在上一个概念的基础上。原创 2024-02-14 18:29:51 · 1304 阅读 · 0 评论 -
【机器学习案例2】使用 plaidML在 macOS利用GPU进行机器学习【含源码】
想要在 Mac 的集成 AMD GPU 或外部显卡上训练机器学习模型? 任何尝试过在 macOS 上使用 TensorFlow 训练神经网络的人都知道这个过程有点糟TensorFlow 只能利用 Mac 上的 CPU,因为 GPU 加速训练需要 Nvidia 芯片组。大多数大型模型在 CPU 上的训练时间比在简单 GPU 上训练的时间要长几个数量级。更糟糕的是,许多 Mac 都配备了功能强大的 AMD GPU,这些 GPU 在训练时被迫闲置。 这时就是 plaidML 的用武之地。原创 2024-02-11 22:51:49 · 1354 阅读 · 0 评论 -
【ML知识博文1】PyTorch vs TensorFlow:谁拥有更多预训练深度学习模型?
众所周知,访问预先训练的深度学习模型对于当代深度学习应用至关重要。随着最先进的模型变得越来越大,达到数万亿个参数,在许多领域,尤其是自动语音识别等领域,从头开始训练高级模型不再有意义。鉴于预训练深度学习模型的重要性,哪个深度学习框架(PyTorch 或 TensorFlow)为用户提供更多此类模型是一个需要回答的重要问题。原创 2024-02-13 21:13:15 · 1272 阅读 · 2 评论 -
【开源训练数据集1】神经语言程式(NLP)项目的15 个开源训练数据集
我们整理了训练聊天机器人所需的对话数据集,包括问答数据、客户支持数据、对话数据和多语言数据以及特殊功能任务的训练数据集。原创 2024-02-11 21:58:41 · 1331 阅读 · 0 评论 -
【机器学习案例1】利用 Python 将语音转换为文本【含源码】
语音识别是一个复杂的过程,因此我不会教您如何训练机器学习/深度学习模型来做到这一点。相反,我将指导您如何使用谷歌语音识别 API 来完成此操作。快速高效的实现语音识别目的的同时,避免重复造轮子带来的资源浪费。只要您具备 Python 基础知识,您就可以成功完成本教程并使用 Python构建您自己的功能齐全的语音识别程序。原创 2024-02-11 16:32:50 · 1366 阅读 · 0 评论