题目链接:
题目大意:
给n个点(n<=100),m条无向边(m<=10000),问这张图的最小环长度。
(注意:无自环,同一个点对之间的多条路最终只算作1条而不是2个点的环,被这里坑了一次)
题目思路:
【最短路】
无向图最小环问题。
有向图最小环的长度为2,但是这题因为是无向图,所以环的长度至少为3。所以可以枚举k为中间点,求i到j不经过k的最短路最后加上Di,k和Dk,j即为答案。
用floyd,时间复杂度是O(n3).
//
//by coolxxx
//
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define eps 1e-8
#define J 10000
#define MAX 0x7f7f7f7f
#define PI 3.1415926535897
#define N 104
using namespace std;
int n,m,lll,ans,cas;
int map[N][N],f[N][N];
void floyd()
{
int i,j,k;
for(k=1;k<=n;k++)
{
for(i=1;i<k;i++)
{
if(map[i][k]==MAX)continue;
for(j=i+1;j<k;j++)
{
if(map[k][j]==MAX || f[i][j]==MAX)continue;
cas=f[i][j]+map[i][k]+map[k][j];
ans=min(ans,cas);
}
}
for(i=1;i<=n;i++)
{
if(f[i][k]==MAX || i==k)continue;
for(j=1;j<=n;j++)
if(f[k][j]!=MAX && i!=j && j!=k)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k,x,y,z;
// while(~scanf("%s",s1))
while(~scanf("%d",&n))
{
memset(map,0x7f,sizeof(map));
scanf("%d",&m);
ans=MAX;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
map[y][x]=map[x][y]=min(map[x][y],z);
}
memcpy(f,map,sizeof(map));
floyd();
if(ans!=MAX)printf("%d\n",ans);
else puts("No solution.");
}
return 0;
}
/*
//
//
*/