【最短路】Vijos P1046 观光旅游

44 篇文章 0 订阅
30 篇文章 0 订阅
题目链接:

  https://vijos.org/p/1046

题目大意

  给n个点(n<=100),m条无向边(m<=10000),问这张图的最小环长度。

  (注意:无自环,同一个点对之间的多条路最终只算作1条而不是2个点的环,被这里坑了一次)

题目思路:

  【最短路】

  无向图最小环问题。

  有向图最小环的长度为2,但是这题因为是无向图,所以环的长度至少为3。所以可以枚举k为中间点,求i到j不经过k的最短路最后加上Di,k和Dk,j即为答案。

  用floyd,时间复杂度是O(n3).

 

//
//by coolxxx
//
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define eps 1e-8
#define J 10000
#define MAX 0x7f7f7f7f
#define PI 3.1415926535897
#define N 104
using namespace std;
int n,m,lll,ans,cas;
int map[N][N],f[N][N];
void floyd()
{
	int i,j,k;
	for(k=1;k<=n;k++)
	{
		for(i=1;i<k;i++)
		{
			if(map[i][k]==MAX)continue;
			for(j=i+1;j<k;j++)
			{
				if(map[k][j]==MAX || f[i][j]==MAX)continue;
				cas=f[i][j]+map[i][k]+map[k][j];
				ans=min(ans,cas);
			}
		}
		for(i=1;i<=n;i++)
		{
			if(f[i][k]==MAX || i==k)continue;
			for(j=1;j<=n;j++)
				if(f[k][j]!=MAX && i!=j && j!=k)
					f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
		}
	}
}
int main()
{
	#ifndef ONLINE_JUDGE
//	freopen("1.txt","r",stdin);
//	freopen("2.txt","w",stdout);
	#endif
	int i,j,k,x,y,z;
//	while(~scanf("%s",s1))
	while(~scanf("%d",&n))
	{
		memset(map,0x7f,sizeof(map));
		scanf("%d",&m);
		ans=MAX;
		for(i=1;i<=m;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			map[y][x]=map[x][y]=min(map[x][y],z);
		}
		memcpy(f,map,sizeof(map));
		floyd();
		if(ans!=MAX)printf("%d\n",ans);
		else puts("No solution.");
	}
	return 0;
}


/*
//

//
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值