Kettle基本介绍

Kettle

主要内容:

一.ETL介绍

二.Kettle介绍

三.Java调用Kettle API

一、ETL介绍

1. ETL是什么?

    1).ETL分别是Extract“ Transform” Load三个单词的首字母缩写也即数据抽取、转换、装载的过程,但我们日常往往简称其为数据抽取。

ETL包含了三方面:

Extract(抽取):将数据从各种原始的业务系统中读取出来,这是所有工作的前提。一般抽取过程需要连接到不同的数据源,以便为随后的步骤提供数据。这一部分看上去简单而琐碎,实际上它是 ETL 解决方案的成功实施的一个主要障碍。

Transform转换):按照预先设计好的规则将抽取得数据进行转换,使本来异构的数据格式能统一起来。任何对数据的处理过程都是转换。这些处理过程通常包括(但不限于)下面一些操作:

移动数据

根据规则验证数据

数据内容和数据结构的修改

将多个数据源的数据集成

根据处理后的数据计算派生值和聚集值

Load装载):将转换完的数据按计划增量或全部导入到数据仓库中。也就是说将数据加载到目标系统的所有操作。

 

   2).ETL数据抽取Extract)、清洗(Cleaning)、转换(Transform)、装载(Load)的过程。是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

   3).ETLBI/DW( Business Intelligence/Data Warehouse , 商务智能/数据仓库)的核心和灵魂,按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程是实施数据仓库的重要步骤。

    DW(Data Warehouse)即数据仓库:这个概念是由被誉为数据仓库之父WilliamH.Inmon博士提出的:数据仓库是一个面向主题的、集成的、随时间变化的、信息相对稳定的数据集合,它用于对企业管理和决策提供支持。

   『

主题:是指用户使用数据仓库进行决策时所关心的重点方面;

集成:是指数据仓库中的信息是经过一系列加工、整理和汇总的过程;

随时间变化:记录过去某一时点到当前各个阶段的信息;

相对稳定:数据进入数据仓库以后,一般很少进行修改,更多的是相对信息的查询操作。

   』

BIBusiness Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。

2. ETLBI/DW核心的体现

     ETL的作用整个BI/DW系统由三大部分组成:数据集成、数据仓库和数据集市、多维数据分析。通常,商务智能运作所依靠的信息系统是一个由传统系统、不兼容数据源、数据库与应用所共同构成的复杂数据集合,各个部分之间不能彼此交流。从这个层面看:目前运行的应用系统是用户花费了很大精力和财力构建的、不可替代的系统,特别是系统的数据。而新建的商务智能系统目的就是要通过数据分析来辅助用户决策,恰恰这些数据的来源、格式不一样,导致了系统实施、数据整合的难度。此时,非常希望有一个全面的解决方案来解决用户的困境,解决数据一致性与集成化问题,使用户能够从已有传统环境与平台中采集数据,并利用一个单一解决方案对其进行高效的转换。这个解决方案就是ETL。 

ETLBI/DW的核心和灵魂,按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程,是实施数据仓库的重要步骤。如果说数据仓库的模型设计是一座大厦的设计蓝图,数据是砖瓦的话,那么ETL就是建设大厦的过程。在整个项目中最难部分是用户需求分析和模型设计,而ETL规则设计和实施则是工作量最大的,其工作量要占整个项目的60%-80%,这是国内外专家从众多实践中得到的普遍共识。

用户的数据源分布在各个子系统和节点中,利用ETL将各个子系统上的数据,通过自动化FTP或手动控制传到UNIXNT服务器上,进行抽取、清洗和转化处理,然后加载到数据仓库。因为现有业务数据源多,保证数据的一致性,真正理解数据的业务含义,跨越多平台、多系统整合数据,最大可能提高数据的质量,迎合业务需求不断变化的特性,是ETL技术处理的关键。

3.  ETL过程中实现数据清洗的实现方法

    首先,在理解源数据的基础上实现数据表属性一致化。为解决源数据的同义异名和同名异义的问题,可通过元数据管理子系统,在理解源数据的同时,对不同表的属性名根据其含义重新定义其在数据挖掘库中的名字,并以转换规则的形式存放在元数据库中,在数据集成的时候,系统自动根据这些转换规则将源数据中的字段名转换成新定义的字段名,从而实现数据挖掘库中的同名同义。

    其次,通过数据缩减,大幅度缩小数据量。由于源数据量很大,处理起来非常耗时,所以可以优先进行数据缩减,以提高后续数据处理分析效率。

    最后,通过预先设定数据处理的可视化功能节点,达到可视化的进行数据清洗和数据转换的目的。针对缩减并集成后的数据,通过组合预处理子系统提供各种数据处理功能节点,能够以可视化的方式快速有效完成数据清洗和数据转换过程。

 

4. ETL工具介绍

ETL的工具功能:必须对抽取到的数据能进行灵活计算、合并、拆分等转换操作。

 

目前,ETL工具的典型代表有:

商业软件:InformaticaIBM DatastageOracle ODIMicrosoft SSIS…

开源软件:KettleTalendCloverETLKetlOctopus …

 

二.Kettle介绍

1. Kettle的今生前世

    Kettle 是 PDI 以前的名称,PDI 的全称是Pentaho Data IntegerationKettle 本意是水壶的意思,表达了数据流的含义。

    Kettle 的主作者是 Matt ,他在 2003 年就开始了这个项目,在 PDI 的代码里就可以看到最早的日期大概在20034月。 从版本2.2开始, Kettle 项目进入了开源领域,并遵守 LGPL 协议。

在 2006年 Kettle 加入了开源的 BIBusiness Intelligence 组织 Pentaho, 正式命名为PDI, 加入Pentaho

<think>好的,我现在要介绍一下Kettle,也就是Pentaho Data Integration(PDI)。首先,我需要回忆一下Kettle基本信息,比如它是什么,主要用途,还有它的核心组件。 用户可能想知道Kettle的功能和优势,所以应该涵盖ETL过程、可视化设计、跨平台支持这些方面。可能还需要提到它的开源背景和现在归属的公司Hitachi Vantara,这样用户了解它的发展历程。 接下来,核心组件部分要详细说明Spoon、Pan、Kitchen、Carte和Chef各自的用途,确保术语准确。比如,Spoon是图形化设计工具,而Pan和Kitchen是命令行工具,分别用于转换和作业。这里可能需要检查这些名称是否正确,避免混淆。 然后,主要特点需要分点列出,比如可视化设计、支持多种数据源、强大的转换功能、可扩展性以及社区支持。这里要注意每个特点的具体内容,比如数据源包括数据库、文件格式,转换功能中的各种步骤和插件机制。 应用场景部分,应该举几个实际的例子,比如数据仓库构建、数据迁移、数据清洗和集成,以及定时任务管理。这些例子能帮助用户理解Kettle的实际用途。 可能还需要提到使用Kettle的优势,比如节省开发时间,降低技术门槛,但也要提到学习曲线和资源消耗的问题,这样回答更全面。 最后,确保整个介绍结构清晰,按照逻辑顺序展开,从定义到组件、特点、应用,再到优缺点。同时,注意使用中文,避免专业术语过于晦涩,必要时进行解释。检查是否有遗漏的重要信息,比如版本更新情况或者社区资源,如果有的话可以补充。 需要确认所有技术名词的翻译是否正确,比如“transformation”翻译为“转换”,“job”翻译为“作业”是否符合习惯。另外,确保LaTeX格式正确,虽然用户的问题中没有数学表达式,但系统指令中提到行内公式要用$...$,这里可能不需要用到,但如果有变量或代码片段,可能需要处理。 总之,目标是提供一个全面、结构清晰且易于理解的Kettle介绍,覆盖其主要功能、组件、特点和应用,同时指出优缺点,帮助用户全面了解这个工具。</think>以下是关于 **Kettle**(现称 **Pentaho Data Integration, PDI**)的详细介绍: --- ### 1. **Kettle 是什么?** Kettle 是一款开源的 **ETL(Extract, Transform, Load)工具**,专注于数据的抽取、转换和加载。它由荷兰公司 Pentaho 开发,后被 Hitachi Vantara 收购,成为其数据集成解决方案的核心组件。 --- ### 2. **核心功能** - **ETL 流程自动化**:支持从多种数据源(数据库、文件、API 等)提取数据,进行清洗、转换后加载到目标系统。 - **可视化设计**:通过拖拽组件的方式设计数据处理流程,无需编写复杂代码。 - **跨平台支持**:基于 Java 开发,可在 Windows、Linux、macOS 等系统运行。 - **大数据集成**:兼容 Hadoop、Spark 等大数据生态。 --- ### 3. **核心组件** - **Spoon**:图形化设计工具,用于创建“转换”(Transformation)和“作业”(Job)。 - **转换**:定义单次数据处理流程(如清洗、过滤)。 - **作业**:将多个转换或任务按顺序/条件组合执行。 - **Pan**:命令行工具,用于执行转换文件。 - **Kitchen**:命令行工具,用于执行作业文件。 - **Carte**:轻量级 Web 服务器,支持分布式执行和集群管理。 --- ### 4. **主要特点** 1. **丰富的连接器** 支持数据库(MySQL、Oracle 等)、文件(CSV、Excel、JSON 等)、NoSQL(MongoDB)、云服务(AWS S3)等多种数据源。 2. **强大的转换能力** - 内置 **200+ 数据处理步骤**(如排序、聚合、字段计算)。 - 支持 JavaScript、SQL、正则表达式等灵活处理逻辑。 3. **可扩展性** 提供插件机制,可自定义步骤、作业项或连接器。 4. **社区与商业支持** - 开源社区活跃,文档和案例丰富。 - 商业版提供企业级功能(如监控、安全管控)。 --- ### 5. **典型应用场景** - **数据仓库构建**:将分散的业务数据整合到统一仓库。 - **数据迁移**:在不同系统间迁移数据(如旧系统到新系统)。 - **数据清洗**:修复缺失值、去重、标准化数据格式。 - **定时任务**:自动化执行日报、周报生成等重复性任务。 --- ### 6. **优势与不足** - **优势**: - 降低 ETL 开发门槛,提升效率。 - 开源免费,适合中小型企业。 - **不足**: - 处理超大规模数据时性能有限。 - 学习曲线较陡峭(需熟悉组件逻辑)。 --- ### 7. **学习资源** - 官方文档:https://pentaho.sourceforge.io/ - 社区论坛:https://community.hitachivantara.com/ --- 如果需要进一步了解具体操作(如安装、案例演示),可以补充提问!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值