题意:
给出n个字符串,每次比赛任意选择两个,只能做两种操作
1.选择一个字符串消去后面一个字符。
2.如果两个字符串相等,可以同时消去。
最后不能进行操作的一方输。
问,后手失败的概率,也即先手赢的概率。
分析:
刚开始审错题了,还以为所有的字符串都要用。。。这题有种博弈的感觉。
任选两个串的话,那么分母就是n*(n-1)/2中情况了。
然后分析何时先手赢。
1.对于a、b两个串,如果|a|+|b|=奇数,那么先手选择较短的那个串,这样就保证先手赢。
2.如果 |a|+|b|=偶数,那么只有a==b的情况下先手赢,否则就是后手处于第一种情况了,那么先手必输。所以总共先手赢的情况就两种,加起来就可以了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#define read freopen("q.in","r",stdin)
#define LL __int64
#define maxn 100005
using namespace std;
map<string,int> mp;
int gcd(int a, int b)
{
if(b==0)return a;
else return gcd(b,a%b);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
mp.clear();
int i,j,n;
string str;
cin>>n;
int odd=0,even=0;
int ans=0;
for(i=0;i<n;i++)
{
cin>>str;
if(str.length()&1)odd++;
else even++;
ans+=mp[str]++;
}
int res=n*(n-1)/2;
ans+=odd*even;
int g=gcd(ans,res);
cout<<ans/g<<"/"<<res/g<<endl;
}
}