给定求子列在母列中的补集

母列为data,子列序数为index
SIZE = 16
data = torch.rand((SIZE,))
index = torch.randint(0,SIZE,(SIZE,))>=(SIZE//2)
print(data)
print(index)
print('子列:',data[index])
print('补集:',data[~index])
tensor([0.2880, 0.9067, 0.7970, 0.0185, 0.8694, 0.0878, 0.4772, 0.6175, 0.1135,
        0.8980, 0.5136, 0.4684, 0.6399, 0.5803, 0.6921, 0.6084])
tensor([ True,  True,  True, False, False,  True,  True,  True, False,  True,
        False,  True, False, False, False, False])
子列: tensor([0.2880, 0.9067, 0.7970, 0.0878, 0.4772, 0.6175, 0.8980, 0.4684])
补集: tensor([0.0185, 0.8694, 0.1135, 0.5136, 0.6399, 0.5803, 0.6921, 0.6084])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值