COCO数据集

COCO数据集概述

COCO的全称是Common Objects in Context,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。

下图是官网给出的可下载的数据集(更新时间2020年01月09日),从这里可看出其数据集主要包括有标注的和无标注的数据:

  • 2014:训练集 + 验证集 + 测试集
  • 2015:测试集
  • 2017:训练集 + 验证集 + 测试集

PK的内容包括:目标检测与实例分割、人体关键点检测、材料识别、全景分割、图像描述

目标检测/实例分割数据标注文件解析

以“2014 Train/Val annotations”标注文件为例,下图是下载下来后其包括的注释文件内容,包括三类文件:captions为图像描述的标注文件、instances为目标检测与实例分割的标注文件、person_keypoints为人体关键点检测的标注文件。建议下载下来后可以自行打开查看,因为注释文件比较大,因此建议用专业软件打开,速度快且不丢数据,例如:Dadroit Viewer软件是我所使用的。

其注释文件中的内容就是一个字典数据结构,包括以下5个key-value对。其中info、images、licenses三个key是三种类型标注文件共享的,最后的annotations和categories按照不同的任务有所不同,下面详细介绍一下每个key字段的含义。

(一)info字段:包括下图中的内容,很好理解,这里就不赘述了。

(二)licenses字段:包括下图中的内容,里面集合了不同类型的licenses,并在images中按照id号被引用,基本不参与到数据解析过程中。

(三)images字段:包括下图中的内容,对应了每张图片的详细信息,其中的id号是被分配的唯一id

(四)categories字段:包括下图中的内容。其中supercategory是父类,name是子类,id是类别id(按照子类统计)。比如下图中所示的。coco数据集共计有80个类别(按照name计算的)

(五)annotations字段:包括下图中的内容,每个序号对应一个注释,一张图片上可能有多个注释。

  • category_id:该注释的类别id;
  • id:当前注释的id号
  • image_id:该注释所在的图片id号
  • area:区域面积
  • bbox:目标的矩形标注框
  • iscrowd:0或1。0表示标注的单个对象,此时segmentation使用polygon表示;1表示标注的是一组对象,此时segmentation使用RLE格式。
  • segmentation:
    • 若使用polygon标注时,则记录的是多边形的坐标点,连续两个数值表示一个点的坐标位置,因此此时点的数量为偶数
    • 若使用RLE格式(Run Length Encoding(行程长度压缩算法))
RLE算法概述
将图像中目标区域的像素值设定为1,背景设定为0,则形成一个张二值图,该二值图可以使用z字形按照位置进行
编码,例如:0011110011100000……
但是这样的形式太复杂了,可以采用统计有多少个0和1的形式进行局部压缩,因此上面的RLE编码形式为:
2-0-4-1-2-0-3-1-5-0……(表示有2个0,4个1,2个0,3个1,5个0)

 

1. COCO 数据集官方下载链接

[1] - train2014 images: (13GB)

http://images.cocodataset.org/zips/train2014.zip

[2] - val2014 images:(6GB)

http://images.cocodataset.org/zips/val2014.zip

[3] - train2014/val2014 annotations:(241MB)

http://images.cocodataset.org/annotations/annotations_trainval2014.zip

[4] - test2014 images: (12GB)

http://images.cocodataset.org/zips/test2014.zip

[5] - test2015 images: (12GB)

http://images.cocodataset.org/zips/test2015.zip

[6] - train2017 images: (18GB)

http://images.cocodataset.org/zips/train2017.zip

[7] - val2017 images: (1GB)

http://images.cocodataset.org/zips/val2017.zip

[8] - train2017/val2017 annotations: (241MB)

http://images.cocodataset.org/annotations/annotations_trainval2017.zip

[9] - stuff train2017/val2017 annotations: (1.1GB)

http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip

[10] - test2017 images: (6GB)

http://images.cocodataset.org/zips/test2017.zip

[11] - Panoptic train2017/val2017 annotations: (821MB)

http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip

[12] - test2017 images: (6GB)

http://images.cocodataset.org/zips/test2017.zip

[13] - Unlabeled2017 images: (19GB)

http://images.cocodataset.org/zips/unlabeled2017.zip

Dataset - COCO Dataset 数据特点 - AIUAI

2. COCO 等开源数据集国内下载站

由于COCO 数据集比较大,官方下载比较慢,从网络上搜到一个开源数据集国内下载站,速度很不错,很稳定. 感谢作者 - Bend_Function.

Bend Function's 开源数据集下载站

Bend_Function - CSDN博客

bend_function - B 站主页

站点地址:http://bendfunction.f3322.net:666/

如果访问失败或下载慢,请使用备用地址替换
备用地址:http://datadownload.f3322.net:666/

文件存放地址:http://bendfunction.f3322.net:666/share

资源列表:

image

 

国内镜像源:https://pjreddie.com/projects/coco-mirror/

 

大部分内容摘自:https://zhuanlan.zhihu.com/p/101984674

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuki_chan_0502

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值