大模型训练中的数据压缩比是一个重要的研究领域,因为它涉及到模型部署时的存储和计算效率。根据搜索结果,清华大学和哈尔滨工业大学的联合研究提出了一种名为OneBit的极限压缩方案,该方案能够实现大模型权重压缩超过90%,并且保留大部分(83%)能力。这种压缩方法通过1bit量化方法,将大模型的参数转化为低位宽的表示,大幅减少了模型的存储空间需求,同时保持了模型的大部分性能。
此外,腾讯发布的万亿大模型训练方法中,通过模型压缩技术,能够在保持模型性能的同时减少模型大小,提高推理速度,降低推理成本。这表明大模型训练和部署过程中的数据压缩比是一个多维度优化的问题,涉及到量化、剪枝、蒸馏等多种技术的综合应用。
需要注意的是,压缩比的具体数值会受到模型类型、压缩技术、目标应用场景等多种因素的影响,因此在不同的研究和应用中可能会有不同的表现。