python 实现检查三个点在 3D 中是否共线算法

检查三个点在 3D 中是否共线算法介绍

在三维空间中,判断三个点是否共线,本质上就是判断这三个点所构成的向量是否线性相关。如果三个点 A ( x 1 , y 1 , z 1 ) 、 B ( x 2 , y 2 , z 2 ) A(x_1, y_1, z_1)、B(x_2, y_2, z_2) A(x1,y1,z1)B(x2,y2,z2) C ( x 3 , y 3 , z 3 ) C(x_3, y_3, z_3) C(x3,y3,z3)共线,那么向量AB和向量AC应该是线性相关的,即存在一个非零实数k,使得 A B = k ∗ A C AB = k * AC AB=kAC

向量AB的坐标为 ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) (x_2-x_1, y_2-y_1, z_2-z_1) (x2x1,y2y1,z2z1),向量AC的坐标为 ( x 3 − x 1 , y 3 − y 1 , z 3 − z 1 ) (x_3-x_1, y_3-y_1, z_3-z_1) (x3x1,y3y1,z3z1)

我们可以通过检查这两个向量的对应分量是否成比例来判断它们是否线性相关。具体算法如下:

计算向量AB和AC:
[ A B → = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) ] [ \overrightarrow{AB} = (x_2-x_1, y_2-y_1, z_2-z_1) ] [AB =(x2x1,y2y1,z2z1)]
[ A C → = ( x 3 − x 1 , y 3 − y 1 , z 3 − z 1 ) ] [ \overrightarrow{AC} = (x_3-x_1, y_3-y_1, z_3-z_1) ] [AC =(x3x1,y3y1,z3z1)]

检查比例关系:
对于x, y, z三个分量,我们需要检查是否满足以下条件(注意这里k对x, y, z应该是同一个值):
[ x 2 − x 1 x 3 − x 1 = y 2 − y 1 y 3 − y 1 = z 2 − z 1 z 3 − z 1 = k ] [ \frac{x_2-x_1}{x_3-x_1} = \frac{y_2-y_1}{y_3-y_1} = \frac{z_2-z_1}{z_3-z_1} = k ] [x3x1x2x1=y3y1y2y1=z3z1z2z1=k]
其中, k ≠ 0 k ≠ 0 k=0,且分母 ( x 3 − x 1 ) , ( y 3 − y 1 ) , ( z 3 − z 1 ) (x_3-x_1), (y_3-y_1), (z_3-z_1) (x3x1),(y3y1),(z3z1)都不能为0(即A、B、C三点不能重合)。

实现算法:

def are_collinear(A, B, C):
    # A, B, C are tuples or lists of coordinates (x, y, z)
    x1, y1, z1 = A
    x2, y2, z2 = B
    x3, y3, z3 = C
    
    # Check for division by zero
    if x1 == x2 == x3 or y1 == y2 == y3 or z1 == z2 == z3:
        return True  # All points are the same, hence collinear
    
    # Check proportionality
    kx = (y2-y1)*(z3-z1) - (z2-z1)*(y3-y1)
    ky = (z2-z1)*(x3-x1) - (x2-x1)*(z3-z1)
    kz = (x2-x1)*(y3-y1) - (y2-y1)*(x3-x1)
    
    # If kx, ky, and kz are all zero, then the points are collinear
    return kx == 0 and ky == 0 and kz == 0

注意,上述算法中通过计算行列式的值(即kx, ky, kz)来检查比例关系。如果这三个值都为零,则说明向量AB和AC是线性相关的,即A、B、C三点共线。

但是,这个方法有一个特殊情况需要注意:当A、B、C三点中任意两点重合时,虽然它们也“共线”,但按照上面的方法(检查比例)会失败,因为会有分母为零的情况。所以在实际使用时,你可能需要先检查是否有点重合的情况。

检查三个点在 3D 中是否共线算法python实现样例

可以使用以下方法来检查三个点在3D中是否共线:

  1. 首先,我们需要定义三个点的坐标。

示例输入:

point1 = (x1, y1, z1)
point2 = (x2, y2, z2)
point3 = (x3, y3, z3)
  1. 接下来,我们需要计算三个点形成的向量。
vector1 = (x2 - x1, y2 - y1, z2 - z1)
vector2 = (x3 - x1, y3 - y1, z3 - z1)
  1. 然后,我们可以计算两个向量的叉积。
cross_product = (vector1[1]*vector2[2] - vector1[2]*vector2[1],
                vector1[2]*vector2[0] - vector1[0]*vector2[2],
                vector1[0]*vector2[1] - vector1[1]*vector2[0])
  1. 最后,我们检查叉积是否为零。如果叉积为零,则三个点共线;否则,它们不共线。
if cross_product == (0, 0, 0):
    print("三个点共线")
else:
    print("三个点不共线")

完整的代码示例:

def check_collinearity(point1, point2, point3):
    vector1 = (point2[0] - point1[0], point2[1] - point1[1], point2[2] - point1[2])
    vector2 = (point3[0] - point1[0], point3[1] - point1[1], point3[2] - point1[2])

    cross_product = (vector1[1]*vector2[2] - vector1[2]*vector2[1],
                     vector1[2]*vector2[0] - vector1[0]*vector2[2],
                     vector1[0]*vector2[1] - vector1[1]*vector2[0])

    if cross_product == (0, 0, 0):
        print("三个点共线")
    else:
        print("三个点不共线")

# 示例输入
point1 = (0, 0, 0)
point2 = (1, 1, 1)
point3 = (2, 2, 2)

check_collinearity(point1, point2, point3)

请注意,该算法假设输入的三个点不重合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值