python 实现miller rabin米勒-拉宾素性检验算法

miller rabin米勒-拉宾素性检验算法介绍

米勒-拉宾素性检验(Miller-Rabin prime test)算法是一种用于判断一个正整数是否为素数的概率性算法。它基于费马小定理和二次探测定理。以下是关于该算法的一些详细解释:

起源

卡内基梅隆大学的Gary Lee Miller教授首先提出了基于广义黎曼猜想的确定性算法,但由于广义黎曼猜想并未被证明,以色列耶路撒冷希伯来大学的Michael O. Rabin教授后来对其进行了修改,提出了不依赖于该假设的随机化算法。

基本原理

费马小定理:
如果p是一个质数,且a与p互质(即a不是p的倍数),那么a^(p-1) ≡ 1 (mod p)。逆否命题为:如果存在一个a与p互质,但a^(p-1) ≢ 1 (mod p),则p一定不是素数。

二次探测定理:
如果p是一个素数,那么对于任意整数x(x < p),若x^2 ≡ 1 (mod p),则x只能是1或p-1。逆否命题为:如果x^2 ≡ 1 (mod p)但x不等于1且x不等于p-1,则p一定不是素数。

算法步骤
将n-1分解为2^r * d的形式,其中d是奇数。
重复k次(k是测试次数,影响判断的准确性):
随机选取一个整数a,满足2 ≤ a ≤ n-2。
计算x = a^d mod n。
如果x = 1或x = n-1,则继续下一次迭代;否则,进入循环:
将x平方后对n取模,即x = x^2 mod n。
如果在循环过程中x = 1,但之前x并未等于n-1,则n为合数。
如果循环结束后x仍不等于1,则n为合数。
如果循环结束(即进行了r次平方操作)且x = n-1,则继续下一次迭代。
如果所有k次测试都未判定n为合数,则n可能是一个素数(但仍有极小的概率是“强伪素数”)。
注意事项
Miller-Rabin算法的正确率随着k的增加而提高,但也会增加计算量。通常进行4~8次测试即可达到较高的正确率。
该算法特别适用于高精度数的素数检验,通过优化可以达到较低的时间复杂度。
尽管Miller-Rabin算法是概率性的,但实际应用中尚未发现通过该算法被误判为素数的合数。
应用场景

Miller-Rabin算法常用于密码学中的素数生成与检验,以及大规模数值计算中的素数判断。

希望以上信息对你有帮助。如果需要进行具体的编程实现或更深入的理论探讨,建议查阅相关文献资料或咨询专业人士。

miller rabin米勒-拉宾素性检验算法python实现样例

下面是一个实现Miller-Rabin算法的Python代码:

import random
 
def miller_rabin(n, k):
    if n == 2 or n == 3:
        return True
    if n % 2 == 0:
        return False
 
    r, s = 0, n - 1
    while s % 2 == 0:
        r += 1
        s //= 2
 
    for _ in range(k):
        a = random.randint(2, n - 2)
        x = pow(a, s, n)
        if x == 1 or x == n - 1:
            continue
 
        for _ in range(r - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
 
    return True

# 测试
n = 123456789
k = 5
result = miller_rabin(n, k)
if result:
    print(f"{n} 可能为素数")
else:
    print(f"{n} 不是素数")

这个代码中的miller_rabin函数用于判断一个数n是否为素数。n是要判断的数,k是算法进行的迭代次数,可以根据需要进行调整。

算法的基本思想是,对于一个待判定的数n,首先判断n是否是2或3,如果是直接返回True。然后判断n是否为偶数,如果是直接返回False。接着通过将n-1进行分解,得到一个奇数s和一个偶数r。然后选择一个随机数a,计算a^s,如果结果为1或n-1,则继续选择下一个随机数。反复将x平方r-1次,如果最终结果不为n-1,则n不是素数。重复上述操作k次,如果每次结果都是n-1,则返回True,否则返回False。

以上代码中使用了Python的库函数random.randint来生成随机数,如果需要运行该代码,请确保已经安装了Python的标准库。

费马素性检验算法、Solovay-Stassen素性检验算法Miller-Rabin素性检验算法都是用于判断一个数是否为素数算法,下面是它们的区别和联系: 1.费马素性检验算法 费马素性检验算法是一种基于费马小定理的素性测试算法。它的原理是:如果p是一个素数,a是小于p的正整数,则a^(p-1) mod p = 1;如果p不是素数,那么对于任意小于p的正整数a,a^(p-1) mod p != 1。因此,我们可以在随机选择的a值下,使用快速幂算法来计算a^(p-1) mod p的值,如果结果不等于1,则p一定不是素数。 缺点:费马素性检验算法存在漏报的情况,即有时候会将合数误判为素数。 2.Solovay-Stassen素性检验算法 Solovay-Stassen素性检验算法是一种基于欧拉准则的素性测试算法。它的原理是:如果p是一个素数,a是小于p的正整数,则a^((p-1)/2) mod p = +-1;如果p不是素数,那么对于任意小于p的正整数a,a^((p-1)/2) mod p != +-1。因此,我们可以在随机选择的a值下,使用快速幂算法来计算a^((p-1)/2) mod p的值,如果结果不等于+-1,则p一定不是素数。 缺点:Solovay-Stassen素性检验算法比费马素性检验算法更加复杂,但依然存在漏报的情况。 3.Miller-Rabin素性检验算法 Miller-Rabin素性检验算法是一种基于费马小定理的素性测试算法,它是目前最常用的素性检验算法之一。它的原理是:如果p是一个素数,a是小于p的正整数,则a^(d*2^r) mod p = 1或者p-1,其中d是一个奇数,2^r是p-1的一个因子;如果p不是素数,那么对于任意小于p的正整数a,a^(d*2^r) mod p != 1或者p-1。因此,我们可以在随机选择的a值下,使用快速幂算法来计算a^(d*2^r) mod p的值,如果结果不等于1且不等于p-1,则p一定不是素数。为了提高精度,Miller-Rabin算法通常会多次进行检验。 优点:Miller-Rabin素性检验算法的误判率很低,可以满足绝大部分应用需求。同时,Miller-Rabin算法的时间复杂度比Solovay-Stassen算法更低。 联系:这三种算法都是基于数论定理进行素性检验的,但是原理和具体实现方法有所不同。费马素性检验算法和Solovay-Stassen素性检验算法都有漏报的情况,而Miller-Rabin素性检验算法的误判率较低。因此在实际应用中,Miller-Rabin算法更加常用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值