spring4.0.9结合redis进行数据的缓存

一、今天将以前公司的由SpringMVC搭建的框架和redis整合。Spring版本为4.0.9  redis安装在linux(CentOS6.5)下面。数据库使用mysql。

由于redis,

 1、优异的读写性能

我在这里使用了Redis-benchmark这个自带的性能测试工具进行了测试,由于是学习的机子,性能一般所以测试结果

测试命令: redis-benchmark -h 192.168.100.131 -p 6379 -c 100 -n 100000

100个并发连接,100000个请求,检测host为localhost 端口为6379的redis服务器性能 

====== SET ======   

100000 requests completed in 5.15 seconds

19432.57 requests per second

====== GET ======
  100000 requests completed in 5.51 seconds

18162.01 requests per second

每秒钟可以set 或者get差不多2万条。

2 支持数据持久化,支持AOF和RDB两种持久化方式
3 支持主从复制,主机会自动将数据同步到从机,可以进行读写分离。
4 数据结构丰富:string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)

该项目是一个作品投票的项目,是一个互联网项目的一个子项目,我们知道作品投票有个特点就是:作品这个表是经常被查询,数据基本不变,我们就没有必要每次用户进入页面的时候就进行数据库查询,我们只要在redis中直接读取就可以了,下面我通过这个项目进行spring和redis进行整合。

1、项目的POM.xml文件加入所需要的jar包

<dependency>
		    <groupId>org.apache.commons</groupId>
		    <artifactId>commons-pool2</artifactId>
		    <version>2.4.2</version>
		</dependency> 
		<dependency>
		    <groupId>redis.clients</groupId>
		    <artifactId>jedis</artifactId>
		    <version>2.8.0</version>
		</dependency>
	
		<dependency>
        <groupId>org.springframework.data</groupId>
        <artifactId>spring-data-redis</artifactId>
        <version>1.6.6.RELEASE</version>
    </dependency> 

2、为了便于redis配置的管理,我们把一些配置信息单独出来放入redis.properties

redis.hostName=192.168.100.131
redis.port=6379
redis.timeout=15000
redis.usePool=true
redis.maxIdle=6
redis.minEvictableIdleTimeMillis=300000
redis.numTestsPerEvictionRun=3
redis.timeBetweenEvictionRunsMillis=60000
3、需要加入redis-context.xml 配置如下

<beans xmlns="http://www.springframework.org/schema/beans" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd" default-autowire="byName"> 
 <bean id="jedisPoolConfig" class="redis.clients.jedis.JedisPoolConfig"> 
  <!-- <property name="maxIdle" value="6"></property> 
  <property name="minEvictableIdleTimeMillis" value="300000"></property> 
  <property name="numTestsPerEvictionRun" value="3"></property> 
  <property name="timeBetweenEvictionRunsMillis" value="60000"></property> -->
  
  <property name="maxIdle" value="${redis.maxIdle}"></property> 
  <property name="minEvictableIdleTimeMillis" value="${redis.minEvictableIdleTimeMillis}"></property> 
  <property name="numTestsPerEvictionRun" value="${redis.numTestsPerEvictionRun}"></property> 
  <property name="timeBetweenEvictionRunsMillis" value="${redis.timeBetweenEvictionRunsMillis}"></property>
 </bean> 
 <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory" destroy-method="destroy"> 
  <property name="poolConfig" ref="jedisPoolConfig"></property> 
  <property name="hostName" value="${redis.hostName}"></property> 
  <property name="port" value="${redis.port}"></property> 
  <property name="timeout" value="${redis.timeout}"></property> 
  <property name="usePool" value="${redis.usePool}"></property>
  <property name="password" value="${redis.password}"></property>
  
 </bean> 
 <bean id="jedisTemplate" class="org.springframework.data.redis.core.RedisTemplate"> 
  <property name="connectionFactory" ref="jedisConnectionFactory"></property> 
  <property name="keySerializer"> 
   <bean class="org.springframework.data.redis.serializer.StringRedisSerializer"/> 
  </property> 
  <property name="valueSerializer"> 
   <bean class="org.springframework.data.redis.serializer.JdkSerializationRedisSerializer"/> 
  </property> 
 </bean> 
</beans> 

4、在Spring配置文件中加入读取redis.properties 和redis-context.xml代码

<bean
		class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
		<property name="locations">
			<list>				
				<value>classpath:/config/redis.properties</value> 
			</list>
		</property>
	</bean>
<import resource="classpath*:modules/redis-context.xml" />
这样以上环境就配置好了。下面我们加入代码进行测试

5、这里需要加入监听器,这个监听器的作用是我们启动项目的时候会把数据库中的数据(这些数据基本不变),放入redis中,下次们去拿的数据,可以直接总redis中获得,无需进入数据库中读取。

import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.log4j.Logger;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationListener;
import org.springframework.context.event.ContextRefreshedEvent;
import org.springframework.stereotype.Service;


@Service
public class StartAddCacheListener implements ApplicationListener<ContextRefreshedEvent> {
	// 日志
	private final Logger log = Logger.getLogger(StartAddCacheListener.class);

	@Autowired
	private RedisCacheUtil<Object> redisCache;

	@Autowired
	private VoteService voteService;

	@Override
	public void onApplicationEvent(ContextRefreshedEvent event) {
		if (event.getApplicationContext().getDisplayName().equals("Root WebApplicationContext")) {
			System.out.println("-------------缓存数据-------------");
			List<VoteProject> voteProjectList = voteService.getAllProject();

			Map<Integer, VoteProject> voteProjectMap = new HashMap<Integer, VoteProject>();

			int cityListSize = voteProjectList.size();

			for (int i = 0; i < cityListSize; i++) {
				voteProjectMap.put(voteProjectList.get(i).getId(), voteProjectList.get(i));
			}

			redisCache.setCacheIntegerMap("voteProjectMap", voteProjectMap);
		}
	}

}

6、将该监听器放入spring配置文件中

	<bean id="startAddCacheListener" class="com.eshine.vote.redis.listener.StartAddCacheListener"></bean>
7、新建一个util缓存工具类

import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.data.redis.core.BoundSetOperations;
import org.springframework.data.redis.core.HashOperations;
import org.springframework.data.redis.core.ListOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Service;

@Service
public class RedisCacheUtil<T> {

	@Autowired
	@Qualifier("jedisTemplate")
	public RedisTemplate redisTemplate;

	/**
	 * 缓存基本的对象,Integer、String、实体类等
	 * 
	 * @param key
	 *            缓存的键值
	 * @param value
	 *            缓存的值
	 * @return 缓存的对象
	 */
	public <T> ValueOperations<String, T> setCacheObject(String key, T value) {

		ValueOperations<String, T> operation = redisTemplate.opsForValue();
		operation.set(key, value);
		return operation;
	}

	/**
	 * 获得缓存的基本对象。
	 * 
	 * @param key
	 *            缓存键值
	 * @param operation
	 * @return 缓存键值对应的数据
	 */
	public <T> T getCacheObject(String key/* ,ValueOperations<String,T> operation */) {
		ValueOperations<String, T> operation = redisTemplate.opsForValue();
		return operation.get(key);
	}

	/**
	 * 缓存List数据
	 * 
	 * @param key
	 *            缓存的键值
	 * @param dataList
	 *            待缓存的List数据
	 * @return 缓存的对象
	 */
	public <T> ListOperations<String, T> setCacheList(String key, List<T> dataList) {
		ListOperations listOperation = redisTemplate.opsForList();
		if (null != dataList) {
			int size = dataList.size();
			for (int i = 0; i < size; i++) {

				listOperation.rightPush(key, dataList.get(i));
			}
		}

		return listOperation;
	}

	/**
	 * 获得缓存的list对象
	 * 
	 * @param key
	 *            缓存的键值
	 * @return 缓存键值对应的数据
	 */
	public <T> List<T> getCacheList(String key) {
		List<T> dataList = new ArrayList<T>();
		ListOperations<String, T> listOperation = redisTemplate.opsForList();
		Long size = listOperation.size(key);

		for (int i = 0; i < size; i++) {
			dataList.add((T) listOperation.leftPop(key));
		}

		return dataList;
	}

	/**
	 * 缓存Set
	 * 
	 * @param key
	 *            缓存键值
	 * @param dataSet
	 *            缓存的数据
	 * @return 缓存数据的对象
	 */
	public <T> BoundSetOperations<String, T> setCacheSet(String key, Set<T> dataSet) {
		BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key);
		/*
		 * T[] t = (T[]) dataSet.toArray(); setOperation.add(t);
		 */

		Iterator<T> it = dataSet.iterator();
		while (it.hasNext()) {
			setOperation.add(it.next());
		}

		return setOperation;
	}

	/**
	 * 获得缓存的set
	 * 
	 * @param key
	 * @param operation
	 * @return
	 */
	public Set<T> getCacheSet(String key/*
										 * ,BoundSetOperations<String,T>
										 * operation
										 */) {
		Set<T> dataSet = new HashSet<T>();
		BoundSetOperations<String, T> operation = redisTemplate.boundSetOps(key);

		Long size = operation.size();
		for (int i = 0; i < size; i++) {
			dataSet.add(operation.pop());
		}
		return dataSet;
	}

	/**
	 * 缓存Map
	 * 
	 * @param key
	 * @param dataMap
	 * @return
	 */
	public <T> HashOperations<String, String, T> setCacheMap(String key, Map<String, T> dataMap) {

		HashOperations hashOperations = redisTemplate.opsForHash();
		if (null != dataMap) {

			for (Map.Entry<String, T> entry : dataMap.entrySet()) {

				/*
				 * System.out.println("Key = " + entry.getKey() + ", Value = " +
				 * entry.getValue());
				 */
				hashOperations.put(key, entry.getKey(), entry.getValue());
			}

		}

		return hashOperations;
	}

	/**
	 * 获得缓存的Map
	 * 
	 * @param key
	 * @param hashOperation
	 * @return
	 */
	public <T> Map<String, T> getCacheMap(String key/*
													 * ,HashOperations<String,String
													 * ,T> hashOperation
													 */) {
		Map<String, T> map = redisTemplate.opsForHash().entries(key);
		/* Map<String, T> map = hashOperation.entries(key); */
		return map;
	}

	/**
	 * 缓存Map
	 * 
	 * @param key
	 * @param dataMap
	 * @return
	 */
	public <T> HashOperations<String, Integer, T> setCacheIntegerMap(String key, Map<Integer, T> dataMap) {
		HashOperations hashOperations = redisTemplate.opsForHash();
		if (null != dataMap) {

			for (Map.Entry<Integer, T> entry : dataMap.entrySet()) {

				/*
				 * System.out.println("Key = " + entry.getKey() + ", Value = " +
				 * entry.getValue());
				 */
				hashOperations.put(key, entry.getKey(), entry.getValue());
			}

		}

		return hashOperations;
	}

	/**
	 * 获得缓存的Map
	 * 
	 * @param key
	 * @param hashOperation
	 * @return
	 */
	public <T> Map<Integer, T> getCacheIntegerMap(String key/*
															 * ,HashOperations<
															 * String,String,T>
															 * hashOperation
															 */) {
		Map<Integer, T> map = redisTemplate.opsForHash().entries(key);
		/* Map<String, T> map = hashOperation.entries(key); */
		return map;
	}

}

8、测试类

import java.util.Map;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.servlet.ModelAndView;



@Controller("/RedisTest")
@RequestMapping({ "/RedisTest*" })
public class RedisTest {

	@Autowired
	private RedisCacheUtil<Object> redisCache;

	@RequestMapping("/testGetCache")
	public ModelAndView testGetCache(HttpServletRequest req, HttpServletResponse rsp) {

		ModelAndView mav = new ModelAndView("html/website/index");

		Map<Integer, VoteProject> voteProjectMap = redisCache.getCacheIntegerMap("voteProjectMap");

		for (int key : voteProjectMap.keySet()) {
			System.out.println("key = " + key + ",value=" + voteProjectMap.get(key).getContent());
		}
		return mav;
	}

}
以上我们已经将代码以及配置全部搭建好了,现在我数据库中一共有17条数据。如下图所示


下面我启动项目,日志提示将读取17条数据


 9、上面提到,有个测试工具类,我们触发它,查看控制台打印数据


我这里数据库并不多,只有十几条,如果数量达到几百万上千万的时候,我每次重启项目都去查询数据库的一千万条记录,显然不合理,所以,对这个项目整合只是一个开始,后面我会尝试在表中加入大量数据,并且对数据进行持久化,如果有时间和机会会在项目尝试redis的主从复制以及读写分离等等。










评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值