题意:给出一个括号的序列,问能够正确匹配的最长的长度。
//假设给定的串是“(())()(()”,当碰到“(”时,给定值为0,碰到“)”,
//判断前面是否有能够进行匹配的“(”,若有,则给值2,否则给0。
//这里可以使用栈来进行匹配“()”,但是遇到“(())”这样,对于第一个“(”,
//当后面的“()”匹配成功出栈的时候,第一个“(”在栈顶,那么就需要记录一下,
//在它右侧成功匹配了多少括号,当它也成功匹配的时候,加上2就是当前的最长匹配长度了。
//但是像“(())()”,这样的长度应该为6,因为“(())”和“()”都是匹配成功的,怎么做呢?
//根据观察这里对应的值为0 0 2 4 0 2,当最后一个“)”匹配成功时,
//我只需判断当前坐标i-num[i]对应的num值是否为0就可以了,为0,
//则说明不正确匹配,否则正确就加上num[i-num[i]]即可。
int longestValidParentheses(string s)
{
int len=s.length();
int* num=(int*)malloc((len+10)*sizeof(int));
stack<int> st;
for(int i=0;i<len;i++)
{
if(s[i]=='(')
{
st.push(0);
num[i]=0;
}else
{
if(!st.empty())
{
num[i]=2+st.top();
st.pop();
if(!st.empty())
{
st.top()+=num[i];
}
}else
{
num[i]=0;
}
}
//cout<<num[i]<<" ";
}
//puts("");
int ans=0;
for(int i=len-1;i>=0;i--)
if(num[i]>0)
{
ans=max(ans,num[i]);
int tl=i-num[i],length=num[i];
while(tl>=0&&num[tl]>0)
{
length+=num[tl];
ans=max(ans,length);
tl=tl-num[tl];
}
i=tl+1;
}
return ans;
}
//使用了上面的方法,你会发现,其实不使用栈也是可以的。
//匹配“(”同样还是给值0,匹配“)”时,此时下标为i的话,
//判断num[i-1]也就是到i-1最长的匹配成功长度,
//下标i-num[i-1]-1就是我们当前i要进行匹配的下标。
//若是“)”,则说明不能够匹配,则给值0;否则,匹配成功,
//num[i]=2+num[i-1];,需要注意的是如果因为“)”匹配成功而使得原本不相邻的两个匹配成功串相邻了,
//例如A(B),AB本不相邻,括号匹配成功后B进行扩充相邻了,
//AB的长度能够加在一起,所以最后还要num[i]+=num[i-num[i]];。
int longestValidParentheses(string s)
{
int len=s.length();
if(len<=1) return 0;
int ans=0;
int* num=(int*)malloc((len+10)*sizeof(int));
num[0]=0;
for(int i=1;i<len;i++)
{
if(s[i]=='(')
{
num[i]=0;
}else
{
if((i-num[i-1]-1>=0)&&s[i-num[i-1]-1]=='(')
{
num[i]=2+num[i-1];
if(i-num[i]>=0)
num[i]+=num[i-num[i]];
ans=max(ans,num[i]);
}else
{
num[i]=0;
}
}
}
return ans;
}