Kiner算法刷题记(十九):动态规划(手撕算法篇)

本文是动态规划算法的刷题笔记,涵盖了三个经典问题:1143. 最长公共子序列、剑指 Offer II 094. 最少回文分割和0/1背包问题。通过解题思路和代码演示,详细解释了动态规划的递推状态、状态转移方程及边界条件,帮助理解动态规划的解决方法。
摘要由CSDN通过智能技术生成

系列文章导引

开源项目

本系列所有文章都将会收录到GitHub中统一收藏与管理,欢迎ISSUEStar

GitHub传送门:Kiner算法算题记

1143. 最长公共子序列

解题思路
  1. 递推状态:我们最长公共子序列的长度取决于以第i-1个字符作为结尾的A字符串与以第j-1个字符作为结尾的B字符串公共子串长度。因此,我们的递推状态应为:dp[i,j],代表:A串长度为i位,B串长度为j位的最长公共子序列的长度
  2. 递推公式(状态转移方程):当我们A串第i-1个字符与B串第j-1个字符相等时,即两个字符串分别以i-1位和j-1位对齐时,最长公共字串的长度应该为:dp[i-1][j-1] + 1,dp[i-1][j-1]代表我们A串第i-1个字符与B串第j-1个字符作为结尾的最长公共字串的长度,再加上当前这个相同的字符串的长度1。而当我们A串第i-1个字符与B串第j-1个字符不相等时,我们公共字串的长度取决于分别以i-1位与j位作为结尾的AB串最长公共字串的长度和分别以i位与j-1位作为结尾的AB串最长公共字串的长度的最大值。综合上述两个条件,我们得到递推公式为:最后一位对齐时:dp[i][j] = dp[i-1][j-1] + 1;最后一位不对齐时:dp[i][j] = max(dp[i-1][j],dp[i][j-1])
  3. 边界条件:当整个字符串都不匹配时,最长公共子序列的长度为0,我们初始时可以将dp数组中每个位置都初始化为0,后续操作也更加方便。
代码演示
function longestCommonSubsequence(text1: string, text2: string): number {
   
    let n = text1.length;
    let m = text2.length;
    // 初始化dp数组为(n+1)*(m+1)的二维数组,并在每一位初始填充为0
    const dp = new Array(n + 1).fill(0).map(() => new Array(m + 1).fill(0));
    for(let i = 1; i <= n; i++) {
   
        for(let j = 1; j <= m; j++) {
   
            // 如果a串的最后一位与b串的最后一位相等
            if(</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星河阅卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值