使用java连接hive,并执行hive语句详解

第一篇:


安装hadoop 和 hive我就不多说了,网上太多文章 自己看去

首先,在机器上打开hiveservice

  1. hive --service hiveserver -p 50000 &  

打开50000端口,然后java就可以使用java连了,需要的jar包我发个图片

就这多jar包,必须的


不多说,直接上代码

  1. package asia.wildfire.hive.service;  
  2.   
  3. import java.sql.*;  
  4. import java.sql.Date;  
  5. import java.text.SimpleDateFormat;  
  6. import java.util.*;  
  7.   
  8. /** 
  9.  * User: liuxiaochen 
  10.  * Date: 13-9-24 
  11.  * Time: 下午5:47 
  12.  * 修改描述 
  13.  */  
  14. public class HiveService {  
  15.     private static final String URLHIVE = "jdbc:hive://ip:50000/default";  
  16.     private static Connection connection = null;  
  17.   
  18.     public static Connection getHiveConnection() {  
  19.         if (null == connection) {  
  20.             synchronized (HiveService.class) {  
  21.                 if (null == connection) {  
  22.                     try {  
  23.                         Class.forName("org.apache.hadoop.hive.jdbc.HiveDriver");  
  24.                         connection = DriverManager.getConnection(URLHIVE, """");  
  25.                     } catch (SQLException e) {  
  26.                         e.printStackTrace();  
  27.                     } catch (ClassNotFoundException e) {  
  28.                         e.printStackTrace();  
  29.                     }  
  30.                 }  
  31.             }  
  32.         }  
  33.         return connection;  
  34.     }  
  35.   
  36.     public static void createTable() throws SQLException {  
  37.         String tweetTableSql = "DROP TABLE IF EXISTS hive_crm_tweet2222";  
  38.         String createTable1 = "CREATE EXTERNAL TABLE hive_crm_tweet2222(tweet_id string, cuser_id string, created_at bigint, year bigint, month bigint, day bigint, hour bigint, text string, comments_count bigint, reposts_count bigint, source string, retweeted_id string, post_type string, sentiment string, positive_tags_string string, predict_tags_string string, tags_string string) STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler' TBLPROPERTIES (\"dynamodb.table.name\" = \"crm_tweet\",\"dynamodb.column.mapping\" = \"tweet_id:tweet_id,cuser_id:cuser_id,created_at:created_at,year:year,month:month,day:day,hour:hour,text:text,comments_count:comments_count,reposts_count:reposts_count,source:source,retweeted_id:retweeted_id,post_type:post_type,sentiment:sentiment,positive_tags_string:positive_tags_string,predict_tags_string:predict_tags_string,tags_string:tags_string\")";  
  39.         String commentTableSql = "DROP TABLE IF EXISTS hive_tweet_comment2222";  
  40.         String createTable2 = "CREATE EXTERNAL TABLE hive_tweet_comment2222(tweet_id string,comment_id string, cuser_id string, user_id string, created_at bigint, year bigint, month bigint, day bigint, hour bigint, text string, comments_count bigint, reposts_count bigint, source string, topic_id string, post_type string, sentiment string) STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler' TBLPROPERTIES (\"dynamodb.table.name\" = \"crm_tweet_comment\",\"dynamodb.column.mapping\" = \"tweet_id:tweet_id,comment_id:comment_id,cuser_id:cuser_id,user_id:user_id,created_at:created_at,year:year,month:month,day:day,hour:hour,text:text,comments_count:comments_count,reposts_count:reposts_count,source:source,topic_id:tweet_id,post_type:post_type,sentiment:sentiment\")";  
  41.         String retweetTableSql = "DROP TABLE IF EXISTS hive_tweet_retweet2222";  
  42.         String createTable3 = "CREATE EXTERNAL TABLE hive_tweet_retweet2222(tweet_id string, cuser_id string, user_id string, retweet_id string, created_at BIGINT, year BIGINT, month BIGINT, day BIGINT, hour BIGINT, text string, comments_count BIGINT, reposts_count BIGINT, source string, topic_id string, verified_type BIGINT, post_type string, sentiment string) STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler' TBLPROPERTIES (\"dynamodb.table.name\" = \"crm_tweet_retweet\",\"dynamodb.column.mapping\" = \"tweet_id:tweet_id,cuser_id:cuser_id,user_id:user_id,retweet_id:retweet_id,created_at:created_at,year:year,month:month,day:day,hour:hour,text:text,comments_count:comments_count,reposts_count:reposts_count,source:source,topic_id:tweet_id,verified_type:verified_type,post_type:post_type,sentiment:sentiment\")";  
  43.   
  44.         Statement stmt = getHiveConnection().createStatement();  
  45.         stmt.executeQuery(tweetTableSql);  
  46.         stmt.executeQuery(createTable1);  
  47.         stmt.executeQuery(commentTableSql);  
  48.         stmt.executeQuery(createTable2);  
  49.         stmt.executeQuery(retweetTableSql);  
  50.         stmt.executeQuery(createTable3);  
  51.     }  
  52.   
  53.     public static void selectTweet() throws SQLException {  
  54.         long aaa = System.currentTimeMillis();  
  55.         long start = DateUtils.getNDaysAgo(DateUtils.getMidNight(), 15).getTime().getTime();  
  56.         long end = DateUtils.getNDaysAgo(DateUtils.getMidNight(), 13).getTime().getTime();  
  57.         String sql = "select cuser_id, count(*) as tw_hour, year, month, day from hive_crm_tweet2222 where created_at > ? and created_at < ? and cuser_id = ? group by cuser_id, year, month, day, hour";  
  58.         PreparedStatement pstm = getHiveConnection().prepareStatement(sql);  
  59.         pstm.setLong(1, start);  
  60.         pstm.setLong(2, end);  
  61.         pstm.setString(3"2176270443");  
  62.         ResultSet rss = pstm.executeQuery();  
  63.         while (rss.next()) {  
  64.             System.out.println("1: " + rss.getString("cuser_id") + "   2: " + rss.getInt("tw_hour") + "   3: " + rss.getInt("year") + "   4: " + rss.getInt("month") + "   5: " + rss.getInt("day"));  
  65.         }  
  66.   
  67.         System.out.println(System.currentTimeMillis() - aaa);  
  68.   
  69.     }  
  70.   
  71.     public static void selectTweet22() throws SQLException {  
  72.         long aaa = System.currentTimeMillis();  
  73.         long start = DateUtils.getNDaysAgo(DateUtils.getMidNight(), 15).getTime().getTime();  
  74.         long end = DateUtils.getNDaysAgo(DateUtils.getMidNight(), 13).getTime().getTime();  
  75.         String sql = "select cuser_id, created_at, tweet_id from hive_crm_tweet2222 where created_at > ? and created_at < ? and cuser_id = ?";  
  76.         PreparedStatement pstm = getHiveConnection().prepareStatement(sql);  
  77.         pstm.setLong(1, start);  
  78.         pstm.setLong(2, end);  
  79.         pstm.setString(3"2176270443");  
  80.         ResultSet rss = pstm.executeQuery();  
  81.         SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH");  
  82.         while (rss.next()) {  
  83.             long cc = Long.valueOf(String.valueOf(rss.getInt("created_at")) + "000");  
  84.             java.util.Date date = new java.util.Date(cc);  
  85.             System.out.println(dateFormat.format(date));  
  86.             System.out.println(rss.getString("cuser_id") + " " + rss.getString("tweet_id"));  
  87.         }  
  88.   
  89.         System.out.println(System.currentTimeMillis() - aaa);  
  90.   
  91.     }  
  92.   
  93.     public static void main(String[] args) throws ClassNotFoundException, SQLException {  
  94. //        Class.forName("org.apache.hadoop.hive.jdbc.HiveDriver");  
  95. //        String querySQL = "SELECT a.* FROM test_time a";  
  96. //  
  97. //        Connection con = DriverManager.getConnection(URLHIVE, "", "");  
  98. //        Statement stmt = con.createStatement();  
  99. //        ResultSet res = stmt.executeQuery(querySQL);   // 执行查询语句  
  100. //  
  101. //        while (res.next()) {  
  102. //            System.out.println("Result: key:" + res.getString(1) + "  –>  value:" + res.getString(2));  
  103. //        }  
  104.         selectTweet22();  
  105.   
  106. //        SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH");  
  107. //        System.out.println(dateFormat.format(new java.util.Date()));  
  108.     }  


第二篇:


我们可以通过CLI、Client、Web UI等Hive提供的用户接口来和Hive通信,但这三种方式最常用的是CLI;Client 是Hive的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出Hive Server所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。今天我们来谈谈怎么通过HiveServer来操作Hive。

  Hive提供了jdbc驱动,使得我们可以用Java代码来连接Hive并进行一些类关系型数据库的sql语句查询等操作。同关系型数据库一样,我们也需要将Hive的服务打开;在Hive 0.11.0版本之前,只有HiveServer服务可用,你得在程序操作Hive之前,必须在Hive安装的服务器上打开HiveServer服务,如下:

1
2
[wyp @localhost /home/q/hive- 0.11 . 0 ]$ bin/hive --service hiveserver -p 10002
Starting Hive Thrift Server

上面代表你已经成功的在端口为10002(默认的端口是10000)启动了hiveserver服务。这时候,你就可以通过Java代码来连接hiveserver,代码如下:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
package com.wyp;
/**
  * User: 过往记忆
  * Date: 13-11-27
  * Time: 下午5:52
  */
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.DriverManager;
 
public class HiveJdbcTest {
     
     private static String driverName =
                    "org.apache.hadoop.hive.jdbc.HiveDriver" ;
   
     public static void main(String[] args)
                             throws SQLException {
         try {
             Class.forName(driverName);
         } catch (ClassNotFoundException e) {
             e.printStackTrace();
             System.exit( 1 );
         }
 
         Connection con = DriverManager.getConnection(
                            "jdbc:hive://localhost:10002/default" , "wyp" , "" );
         Statement stmt = con.createStatement();
         String tableName = "wyphao" ;
         stmt.execute( "drop table if exists " + tableName);
         stmt.execute( "create table " + tableName +
                                      " (key int, value string)" );
         System.out.println( "Create table success!" );
         // show tables
         String sql = "show tables '" + tableName + "'" ;
         System.out.println( "Running: " + sql);
         ResultSet res = stmt.executeQuery(sql);
         if (res.next()) {
             System.out.println(res.getString( 1 ));
         }
 
         // describe table
         sql = "describe " + tableName;
         System.out.println( "Running: " + sql);
         res = stmt.executeQuery(sql);
         while (res.next()) {
             System.out.println(res.getString( 1 ) + "\t" + res.getString( 2 ));
         }
 
 
         sql = "select * from " + tableName;
         res = stmt.executeQuery(sql);
         while (res.next()) {
             System.out.println(String.valueOf(res.getInt( 1 )) + "\t"
                                                + res.getString( 2 ));
         }
 
         sql = "select count(1) from " + tableName;
         System.out.println( "Running: " + sql);
         res = stmt.executeQuery(sql);
         while (res.next()) {
             System.out.println(res.getString( 1 ));
         }
     }
}

编译上面的代码,之后就可以运行(我是在集成开发环境下面运行这个程序的),结果如下:

01
02
03
04
05
06
07
08
09
10
Create table success!
Running: show tables 'wyphao'
wyphao
Running: describe wyphao
key                     int                
value                   string             
Running: select count( 1 ) from wyphao
0
 
Process finished with exit code 0
  如果你想在脚本里面运行,请将上面的程序打包成jar文件,并将上面的依赖库放在/home/wyp/lib/(这个根据你自己的情况弄)中,同时加入到运行的环境变量,脚本如下:
01
02
03
04
05
06
07
08
09
10
11
12
13
#!/bin/bash
HADOOP_HOME=/home/q/hadoop- 2.2 . 0
HIVE_HOME=/home/q/hive- 0.11 . 0 -bin
 
CLASSPATH=$CLASSPATH:
 
for i in /home/wyp/lib/*.jar ; do
     CLASSPATH=$CLASSPATH:$i
done
 
echo $CLASSPATH
/home/q/java/jdk1. 6 .0_20/bin/java -cp  \
    $CLASSPATH:/export1/tmp/yangping.wu/OutputText.jar  com.wyp.HiveJdbcTest

上面是用Java连接HiveServer,而HiveServer本身存在很多问题(比如:安全性、并发性等);针对这些问题,Hive0.11.0版本提供了一个全新的服务:HiveServer2,这个很好的解决HiveServer存在的安全性、并发性等问题。这个服务启动程序在${HIVE_HOME}/bin/hiveserver2里面,你可以通过下面的方式来启动HiveServer2服务:

1
$HIVE_HOME/bin/hiveserver2

也可以通过下面的方式启动HiveServer2

1
$HIVE_HOME/bin/hive --service hiveserver2

两种方式效果都一样的。但是以前的程序需要修改两个地方,如下所示:

01
02
03
04
05
06
07
08
09
10
11
private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver" ;
改为
private static String driverName = "org.apache.hive.jdbc.HiveDriver" ;
 
 
 
Connection con = DriverManager.getConnection(
                            "jdbc:hive://localhost:10002/default" , "wyp" , "" );
改为
Connection con = DriverManager.getConnection(
                            "jdbc:hive2://localhost:10002/default" , "wyp" , "" );

其他的不变就可以了。

  这里顺便说说本程序所依赖的jar包,一共有以下几个:
1
2
3
4
5
6
7
8
hadoop- 2.2 . 0 /share/hadoop/common/hadoop-common- 2.2 . 0 .jar
$HIVE_HOME/lib/hive-exec- 0.11 . 0 .jar
$HIVE_HOME/lib/hive-jdbc- 0.11 . 0 .jar
$HIVE_HOME/lib/hive-metastore- 0.11 . 0 .jar 
$HIVE_HOME/lib/hive-service- 0.11 . 0 .jar  
$HIVE_HOME/lib/libfb303- 0.9 . 0 .jar  
$HIVE_HOME/lib/commons-logging- 1.0 . 4 .jar 
$HIVE_HOME/lib/slf4j-api- 1.6 . 1 .jar

  如果你是用Maven,加入以下依赖

01
02
03
04
05
06
07
08
09
10
11
<dependency>
         <groupId>org.apache.hive</groupId>
         <artifactId>hive-jdbc</artifactId>
         <version> 0.11 . 0 </version>
</dependency>
 
<dependency>
         <groupId>org.apache.hadoop</groupId>
         <artifactId>hadoop-common</artifactId>
         <version> 2.2 . 0 </version>
</dependency>


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值