# 线段树（待续）（区间每个数加上不同的斐波那契额数）Codeforces Round #FF (Div. 2)E

E. DZY Loves Fibonacci Numbers

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2).

DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: a1, a2, ..., an. Moreover, there are m queries, each query has one of the two types:

1. Format of the query "1 l r". In reply to the query, you need to add Fi - l + 1 to each element ai, where l ≤ i ≤ r.
2. Format of the query "2 l r". In reply to the query you should output the value of modulo 1000000009 (109 + 9).

Help DZY reply to all the queries.

Input

The first line of the input contains two integers n and m (1 ≤ n, m ≤ 300000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — initial array a.

Then, m lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality 1 ≤ l ≤ r ≤ n holds.

Output

For each query of the second type, print the value of the sum on a single line.

Sample test(s)
Input
4 4
1 2 3 4
1 1 4
2 1 4
1 2 4
2 1 3

Output
17
12

Note

After the first query, a = [2, 3, 5, 7].

For the second query, sum = 2 + 3 + 5 + 7 = 17.

After the third query, a = [2, 4, 6, 9].

For the fourth query, sum = 2 + 4 + 6 = 12.

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;

typedef long long ll;
#define rep(i,s,t) for(int i=s;i<t;i++)
#define red(i,s,t) for(int i=s-1;i>=t;i--)
#define clr(a,v) memset(a,v,sizeof a)
#define L t<<1
#define R t<<1|1
#define MID int mid=(l+r)>>1;
#define max(a,b) (a<b?b:a)
#define min(a,b) (a<b?a:b)
#define SQR(a) ((a)*(a))

inline int input(){
int ret=0;bool isN=0;char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') isN=1;
c=getchar();
}
while(c>='0' && c<='9'){
ret=ret*10+c-'0';
c=getchar();
}
return isN?-ret:ret;
}

inline void output(ll x){
if(x<0){
putchar('-');x=-x;
}
int len=0,data[20];
while(x){
data[len++]=x%10;x/=10;
}
if(!len)    data[len++]=0;
while(len--)
putchar(data[len]+48);
putchar('\n');
}

const int MAXN=300005;
const ll mod=1000000009;
struct Ma{
ll a[2][2];
}D,E,Z;
inline Ma mul(Ma x,Ma y){
Ma ans;
rep(i,0,2) rep(j,0,2){
ans.a[i][j]=0;
rep(k,0,2){
ans.a[i][j]+=x.a[i][k]*y.a[k][j]%mod;
}
ans.a[i][j]%=mod;
}
return ans;
}
rep(i,0,2) rep(j,0,2){
x.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
}
}

inline Ma Pow(Ma a,ll b){
Ma d=E,t=a;
while(b){
if(b&1) d=mul(d,t);
b>>=1;
t=mul(t,t);
}
return d;
}
inline ll Pow(ll a,ll b){
ll d=1,t=a%mod;//记得取模，否则逆元处要超出范围。
while(b){
if(b&1) d=d*t%mod;
b>>=1;
t=t*t%mod;
}
return d;
}
inline bool Inver(Ma a,Ma &ans){
/*
| a b |
| c d |
的逆矩阵
(1/(ad-bc)) * | d -b |
|-c a  |
*/
/*
0,0 0,1
1,0 1,1
*/
ll x=a.a[0][0]*a.a[1][1]-a.a[0][1]*a.a[1][0];
if(x==0) return 0;
if(x>0){
x=Pow(x,mod-2);
ans.a[0][0]=x*a.a[1][1]%mod;
ans.a[1][1]=x*a.a[0][0]%mod;
ans.a[0][1]=x*(-a.a[0][1])%mod;
ans.a[1][0]=x*(-a.a[1][0])%mod;
}
else{
x=Pow(-x,mod-2);
ans.a[0][0]=x*(-a.a[1][1])%mod;
ans.a[1][1]=x*(-a.a[0][0])%mod;
ans.a[0][1]=x*a.a[0][1]%mod;
ans.a[1][0]=x*a.a[1][0]%mod;
}
rep(i,0,2) rep(j,0,2) ans.a[i][j]=(ans.a[i][j]+mod)%mod;
return 1;
}

ll F[MAXN],Fsum[MAXN];
inline void init(){
rep(i,0,2) rep(j,0,2) {Z.a[i][j]=0,E.a[i][j]=(i==j),D.a[i][j]=1;}
D.a[1][1]=0;
F[0]=0;
F[1]=F[2]=1;
rep(i,3,MAXN){
F[i]=(F[i-1]+F[i-2])%mod;
}
Fsum[0]=0;
rep(i,1,MAXN){
Fsum[i]=(Fsum[i-1]+F[i])%mod;
}
}

int n,m,op,x,y;
int a[MAXN];
ll data[MAXN<<2];
Ma lazy[MAXN<<2];
int lch[MAXN<<2],rch[MAXN<<2];

inline ll get(int l,int r,Ma v){
return ((Fsum[r]-Fsum[l-1]+mod)%mod*v.a[1][1]%mod+(Fsum[r+1]-Fsum[l]+mod)%mod*v.a[1][0]%mod)%mod;
}

inline void push_up(int t){
data[t]=(data[L]+data[R])%mod;
}

inline bool cmp(Ma x,Ma y){
rep(i,0,2) rep(j,0,2) if(x.a[i][j]!=y.a[i][j]) return 0;
return 1;
}

inline void push_down(int t){
if(cmp(lazy[t],Z)==0){
data[L]+=get(lch[L],rch[L],lazy[t]);
data[L]%=mod;

data[R]+=get(lch[R],rch[R],lazy[t]);
data[R]%=mod;

lazy[t]=Z;
}
}

inline void build(int t,int l,int r){
lazy[t]=Z;data[t]=0;
lch[t]=l;
rch[t]=r;
if(l==r){
data[t]=a[l];
}
else{
MID;
build(L,l,mid);
build(R,mid+1,r);
push_up(t);
}
}

inline void add(int t,int x,int y,Ma v){
int l=lch[t],r=rch[t];
if(l>=x && r<=y){
data[t]+=get(l,r,v);
data[t]%=mod;
}
else{
push_down(t);
MID;
else{
}
push_up(t);
}
}

inline ll query(int t,int x,int y){
int l=lch[t],r=rch[t];
if(l>=x && r<=y) return data[t];
push_down(t);
MID;
if(y<=mid) return query(L,x,y);
else if(x>mid) return query(R,x,y);
else return (query(L,x,mid)+query(R,mid+1,y))%mod;
}

int main(){
init();
n=input(),m=input();
rep(i,1,n+1) a[i]=input();
build(1,1,n);
rep(i,0,m){
op=input(),x=input(),y=input();
if(op==2) output(query(1,x,y));
else{
Ma ma=Pow(D,x-1),b;
if(Inver(ma,b))