动态树LCT(SPOJ375)

原来用树链剖分写过,最近学动态树,从写一遍

题意:改变边权值,询问连点之间边权的最大值

思路:这个题维护的是边权,我是吧边权转化为点权,这样需要注意的是不能换根,因为换根之后权值就变了

那么如何解决那,就要用到LCA了,LCA的时候先Access(v),使得v到根的路径暴露出来,形成一颗Splay,然后u沿着pre向上走,知道走到v到根的脸上,说明找到了LCA,因为这个时候Splay(LCA),所以pre[LCA]==0,调出



#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=10010;
const int INF=1000000000;
int N,tot;
struct E
{
    int v,next,w,id;
}edge[maxn*2];
int head[maxn];
int id[maxn];

struct LCT
{
    int ch[maxn][2],pre[maxn],key[maxn];
    int maxv[maxn];
    bool rt[maxn];
    int rev[maxn];
    void init()
    {
        tot=0;
        memset(head,-1,sizeof(head));
        memset(pre,0,sizeof(pre));
        memset(ch,0,sizeof(ch));
        memset(rev,0,sizeof(rev));
        for(int i=0;i<=N;i++)rt[i]=true;
        maxv[0]=-INF;
    }
    void dfs(int u,int f)
    {
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(v==f)continue;
            //if(pre[v]!=0)continue;
            dfs(v,u);
            pre[v]=u;
            id[edge[i].id]=v;
            key[v]=edge[i].w;
        }
    }
    void update_rev(int r)
    {
        if(!r)return;
        swap(ch[r][0],ch[r][1]);
        rev[r]^=1;
    }
    void pushdown(int r)
    {

    }
    void pushup(int r)
    {
        maxv[r]=max(max(maxv[ch[r][0]],maxv[ch[r][1]]),key[r]);
    }
    void rotate(int x)
    {
        int y=pre[x],kind=ch[y][1]==x;
        ch[y][kind]=ch[x][!kind];
        pre[ch[y][kind]]=y;
        pre[x]=pre[y];
        pre[y]=x;
        ch[x][!kind]=y;
        if(rt[y])rt[y]=false,rt[x]=true;
        else ch[pre[x]][ch[pre[x]][1]==y]=x;
        pushup(y);
    }
    //将根节点到r的路径上的所有及诶单的标记下方
    void P(int r)
    {
        if(!rt[r])P(pre[r]);
        pushdown(r);
    }
    void Splay(int r)
    {
        P(r);
        while(!rt[r])
        {
            int f=pre[r],ff=pre[f];
            if(rt[f])rotate(r);
            else if((ch[ff][1]==f)==(ch[f][1]==r))
                rotate(f),rotate(r);
            else rotate(r),rotate(r);
        }
        pushup(r);
    }
    int Access(int x)
    {
        int y=0;
        for(;x;x=pre[y=x])
        {
            Splay(x);
            rt[ch[x][1]]=true,rt[ch[x][1]=y]=false;
            pushup(x);
        }
        return y;
    }
    int getroot(int x)
    {
        Access(x);
        Splay(x);
        while(ch[x][0])x=ch[x][0];
        return x;
    }
    bool judge(int u,int v)
    {
        while(pre[u])u=pre[u];
        while(pre[v])v=pre[v];
        return u==v;
    }
    void mroot(int r)
    {
        Access(r);
        Splay(r);
        update_rev(r);
    }
    void link(int u,int v)
    {
        mroot(u);
        pre[u]=v;
    }
    void cut(int u)
    {
        Access(u);
        Splay(u);
        pre[ch[u][0]]=0;
        pre[u]=0;
        rt[ch[u][0]]=true;
        ch[u][0]=0;
        pushup(u);
    }
    void lca(int &u,int &v)
    {
        Access(v);v=0;
        while(u)
        {
            Splay(u);
            if(!pre[u])return ;
            rt[ch[u][1]]=true;
            rt[ch[u][1]=v]=false;
            pushup(u);
            u=pre[v=u];
        }
    }
}tree;
void add_edge(int u,int v,int w,int i)
{
    edge[tot].v=v;
    edge[tot].w=w;
    edge[tot].next=head[u];
    edge[tot].id=i;
    head[u]=tot++;
}
void Change(int idx,int x)
{
    tree.Access(idx);
    //tree.Splay(idx);
    tree.key[idx]=x;
    tree.pushup(idx);
    //tree.Splay(idx);
}
void Query(int u,int v)
{
    tree.lca(u,v);
    printf("%d\n",max(tree.maxv[v],tree.maxv[tree.ch[u][1]]));
}
int main()
{
    int T;
    scanf("%d",&T);
    int u,v,w;
    char op[10];
    while(T--)
    {
        scanf("%d",&N);
        tree.init();
        for(int i=1;i<N;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            add_edge(u,v,w,i);
            add_edge(v,u,w,i);
        }
        tree.dfs(1,0);
        while(scanf("%s",op)!=EOF)
        {
            if(!strcmp(op,"DONE"))break;
            scanf("%d%d",&u,&v);
            if(op[0]=='C')Change(id[u],v);
            else Query(u,v);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值