原来用树链剖分写过,最近学动态树,从写一遍
题意:改变边权值,询问连点之间边权的最大值
思路:这个题维护的是边权,我是吧边权转化为点权,这样需要注意的是不能换根,因为换根之后权值就变了
那么如何解决那,就要用到LCA了,LCA的时候先Access(v),使得v到根的路径暴露出来,形成一颗Splay,然后u沿着pre向上走,知道走到v到根的脸上,说明找到了LCA,因为这个时候Splay(LCA),所以pre[LCA]==0,调出
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=10010;
const int INF=1000000000;
int N,tot;
struct E
{
int v,next,w,id;
}edge[maxn*2];
int head[maxn];
int id[maxn];
struct LCT
{
int ch[maxn][2],pre[maxn],key[maxn];
int maxv[maxn];
bool rt[maxn];
int rev[maxn];
void init()
{
tot=0;
memset(head,-1,sizeof(head));
memset(pre,0,sizeof(pre));
memset(ch,0,sizeof(ch));
memset(rev,0,sizeof(rev));
for(int i=0;i<=N;i++)rt[i]=true;
maxv[0]=-INF;
}
void dfs(int u,int f)
{
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(v==f)continue;
//if(pre[v]!=0)continue;
dfs(v,u);
pre[v]=u;
id[edge[i].id]=v;
key[v]=edge[i].w;
}
}
void update_rev(int r)
{
if(!r)return;
swap(ch[r][0],ch[r][1]);
rev[r]^=1;
}
void pushdown(int r)
{
}
void pushup(int r)
{
maxv[r]=max(max(maxv[ch[r][0]],maxv[ch[r][1]]),key[r]);
}
void rotate(int x)
{
int y=pre[x],kind=ch[y][1]==x;
ch[y][kind]=ch[x][!kind];
pre[ch[y][kind]]=y;
pre[x]=pre[y];
pre[y]=x;
ch[x][!kind]=y;
if(rt[y])rt[y]=false,rt[x]=true;
else ch[pre[x]][ch[pre[x]][1]==y]=x;
pushup(y);
}
//将根节点到r的路径上的所有及诶单的标记下方
void P(int r)
{
if(!rt[r])P(pre[r]);
pushdown(r);
}
void Splay(int r)
{
P(r);
while(!rt[r])
{
int f=pre[r],ff=pre[f];
if(rt[f])rotate(r);
else if((ch[ff][1]==f)==(ch[f][1]==r))
rotate(f),rotate(r);
else rotate(r),rotate(r);
}
pushup(r);
}
int Access(int x)
{
int y=0;
for(;x;x=pre[y=x])
{
Splay(x);
rt[ch[x][1]]=true,rt[ch[x][1]=y]=false;
pushup(x);
}
return y;
}
int getroot(int x)
{
Access(x);
Splay(x);
while(ch[x][0])x=ch[x][0];
return x;
}
bool judge(int u,int v)
{
while(pre[u])u=pre[u];
while(pre[v])v=pre[v];
return u==v;
}
void mroot(int r)
{
Access(r);
Splay(r);
update_rev(r);
}
void link(int u,int v)
{
mroot(u);
pre[u]=v;
}
void cut(int u)
{
Access(u);
Splay(u);
pre[ch[u][0]]=0;
pre[u]=0;
rt[ch[u][0]]=true;
ch[u][0]=0;
pushup(u);
}
void lca(int &u,int &v)
{
Access(v);v=0;
while(u)
{
Splay(u);
if(!pre[u])return ;
rt[ch[u][1]]=true;
rt[ch[u][1]=v]=false;
pushup(u);
u=pre[v=u];
}
}
}tree;
void add_edge(int u,int v,int w,int i)
{
edge[tot].v=v;
edge[tot].w=w;
edge[tot].next=head[u];
edge[tot].id=i;
head[u]=tot++;
}
void Change(int idx,int x)
{
tree.Access(idx);
//tree.Splay(idx);
tree.key[idx]=x;
tree.pushup(idx);
//tree.Splay(idx);
}
void Query(int u,int v)
{
tree.lca(u,v);
printf("%d\n",max(tree.maxv[v],tree.maxv[tree.ch[u][1]]));
}
int main()
{
int T;
scanf("%d",&T);
int u,v,w;
char op[10];
while(T--)
{
scanf("%d",&N);
tree.init();
for(int i=1;i<N;i++)
{
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w,i);
add_edge(v,u,w,i);
}
tree.dfs(1,0);
while(scanf("%s",op)!=EOF)
{
if(!strcmp(op,"DONE"))break;
scanf("%d%d",&u,&v);
if(op[0]=='C')Change(id[u],v);
else Query(u,v);
}
}
return 0;
}