洛谷

洛谷

P1147连续自然数和

题目描述

对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。

例子:1998+1999+2000+2001+2002=10000,所以从1998到2002的一个自然数段为M=10000的一个解。

分析

用M除以比它小的数n,可以得到最中间的数的值(如果为*.5,为中间两个数的平均数),比如10000除以5,得到2000,2000就是中间的数的值,5是数的个数,则往两边扩展,每边都还需要2个数。起始为2000-2,终止为2000+2;如果n为偶数,则中间靠左边的数为这个值取整,比如有10个数,一共需要向左边扩展(10-2)/2个数,需要向右边扩展10/2个数。这样不好写。
另一种思路:因为是连续数的和,可以使用等差数列求和公式,如果首项是x,一共有i项,和为 i ∗ n + i ∗ ( i − 1 ) 2 i*n+\dfrac{{i*(i-1)}}{{2}} in+2i(i1),可以枚举i,反求n:
M = i ∗ n + i ∗ ( i − 1 ) 2 M=i*n+\dfrac{{i*(i-1)}}{{2}} M=in+2i(i1)
n = M i − i − 1 2 = 2 ∗ M − i 2 + i ( 分 子 ) 2 ∗ i ( 分 母 ) n=\dfrac{{M}}{{i}}-\dfrac{{i-1}}{{2}}=\dfrac{{2*M-i^2+i(分子)}}{{2*i(分母)}} n=iM2i1=2i2Mi2+i
即如果分子可以整除分母,即为一组答案,n为第一个数字,i为数字的个数,n+i-1为最后一个数字

代码

#include <bits/stdc++.h>
using namespace std;

const double eps = 1e-8;

int m;

int main()
{
    ios::sync_with_stdio(false);
    vector<pair<int, int> > ans;
    while(cin>>m){
        int i = 1;
        int n = m/i-(i-1)/2;
        while(n > 0){
            if(i > 1 && (2*m-i*i+i)%(2*i) == 0){
                pair<int, int> tmp;
                tmp.first = n;
                tmp.second = n+i-1;
                ans.push_back(tmp);
            }
            i++;
            n = m/i-(i-1)/2;
        }
        for(int i=(int)ans.size()-1;i>=0;i--){
            cout << ans[i].first << ' ' << ans[i].second << endl;
        }
    }

    return 0;
}

P1029 最大公约数和最小公倍数

题目描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值