746. Min Cost Climbing Stairs

本文介绍了一个经典的动态规划问题——最小成本爬楼梯。给定每个阶梯的成本,目标是找到从底部到达顶部的最低成本路径,可以选择一步上一级或两级。文章详细解释了状态转移方程,并提供了实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:

Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:

Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:

  1. cost will have a length in the range [2, 1000].
  2. Every cost[i] will be an integer in the range [0, 999].

思路

本题是个典型的dp问题。写出对应的状态子方程即可。
d p [ i ] = m i n ( d p [ i − 1 ] + c o s t [ i − 1 ] , d p [ i − 2 ] + c o s t [ i − 2 ] ) ; dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]); dp[i]=min(dp[i1]+cost[i1],dp[i2]+cost[i2]);

代码

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        if(cost.size()<=2)
            return 0;
        vector<int> dp(cost.size()+1,0);
        for(int i=0;i<cost.size();i++)
        {
            dp[i] = cost[i];
        }
        dp[0] = 0;
        dp[1] = 0;
        for(int i=2;i<=cost.size();i++)
        {
            dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.size()];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roaring Kitty

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值