数位dp,dp[i][j][k],
i表示3类数字:
1类表示windy,0类表示当前所有windy数,0类表示以0开头的windy但加上前导零就不是windy的数,2类表示除了0类以外的windy
j范围0~9,表示以j开头的windy数。
k表示位数
j表示以0~9开头的数字
#include<stdio.h>
#include<string.h>
#define LL long long
int dp[3][11][30];//1表示windy,0表示以0开头的windy但加上前导零就不是windy的数,2表示除了0类以外的windy
int a[15];
void init()
{
int i,j,k;
for(i=0;i<10;i++)dp[1][i][1]=1;
dp[2][0][1]=1;
for(i=2;i<12;i++){
for(j=0;j<10;j++){
if(j==0){
for(k=0;k<10;k++){
dp[1][j][i]+=dp[1][k][i-1];//以0开头的,把前面所有的windy都加上去
if(k>=2)dp[2][j][i]+=dp[1][k][i-1];//以0开头的,处理出2类
}
continue;
}
for(k=0;k<10;k++)
{
if(j-k>=2||j-k<=-2){
if(k)
dp[1][j][i]+=dp[1][k][i-1];//没有前导零
else
dp[1][j][i]+=dp[2][k][i-1];//k=0,有前导零,要把0类去掉
}
}
}
}
}
int solve(int n)
{
int i,j,k;
for(i=1;n;i++)
{
a[i]=n%10;
n/=10;
}
int len=i,ans=0;
a[len]=-2;
for(i=len-1;i>0;i--)
{
for(j=0;j<a[i];j++)
{
if(j-a[i+1]>=2||j-a[i+1]<=-2)
{
if(j==0&&i<len-1){
ans+=dp[2][j][i];
continue;
}
ans+=dp[1][j][i];
}
}
if((a[i]-a[i+1]<2)&&(a[i]-a[i+1]>-2))break;
}
return ans;
}
int main()
{
init();
int a,b;
while(scanf("%d%d",&a,&b)!=-1)
printf("%d\n",solve(b+1)-solve(a));
return 0;
}
//123123 3245355