POJ之1012

问题描述:
有k个坏人k个好人坐成一圈,前k个为好人(编号1~k),后k个为坏人(编号k+1~2k),现在从编号1开始报数,一直报到m,一
轮结束后,必须要求第m个报数的人死掉,而且他要是坏人,在他死掉之后继续从他的下一个开始报数,也是从1开始报到m,
第m个是坏人,拉出去毙掉,直到坏人全部死去,好人全部留下,我们需要编程找到这个值m;
 
解题思路: 
推导时要注意2点:
第一:每轮都是以前一轮死掉的人的后一个人作为“1”开始顺序编号的
如:k=3  编号:1 2 3 4 5 6 
正确答案m=5
第一轮报数后,5号被杀掉,那么以6号开始作为下一轮的“1”重新编号,然后数到4,四号被杀掉,然后是6号被杀掉,结束!!
第二:f[i]=(f[i-1]+m)%(n-i);   (i>1) 这是网上一些地方给出的递推公式,对于本题而言是不正确的。因为这种递推公式针对
的是从0开始报数的Joseph,本题是从1开始报数的,必须要变形,最后就是由于本题k值有限,只有13个值,那么POJ的数据测试
就极有可能重复测试每个k值的结果,为了节省总体时间,我们的程序只在第一次得到k值的时候计算m值,然后保存下来,当k值
再次出现时,就直接把保存的结果输出,不再计算m。这是在服务器打表的处理。另外有了递推的程序后,我们就知道了每个k值
对应的m值。此时追求0ms AC的同学可以利用递推程序的结果,再写一个程序,直接在程序里面打表
int Joseph[]={0,2,7,5,30,169,441,1872,7632,1740,93313,459901,1358657,2504881,1245064};
<此题有参考某同学的······>

#include<iostream>
using namespace std;

int main(void)
{
	int Joseph[14]={0};  //打表,保存各个k值对应的m值

	int k;
	while(cin>>k)
	{
		if(!k)
			break;
		if(Joseph[k])
		{
			cout<<Joseph[k]<<endl;
			continue;
		}
		int n=2*k;  
		int ans[30]={0};  //第i轮杀掉 对应当前轮的编号为ans[i]的人,每一轮都以报数为“1”的人开始重新编号

		int m=1;    //所求的最少的报数
		for(int i=1;i<=k;i++)  //轮数
		{
			ans[i]=(ans[i-1]+m-1)%(n-i+1);   //n-i为剩余的人数
			if(ans[i]<k)  //把好人杀掉了,m值不是所求
			{
				i=0;
				m++;  //枚举m值
			}
		}
		Joseph[k]=m;
		cout<<m<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值