一、paxos 算法是什么
解决分布式系统一致性的问题的算法
paxos(帕克索斯)
二、为什么有这个算法
1、分布式必然替代集中式。
2、分布式系统必然会出现节点故障、通信异常、网络分区等问题
3、分布式种种问题、必然会导致数据一致性的问题。
4、必然就要解决一致性问题。
三、Paxos如何解决一致性问题
只要达到以下目标,就能解决
1、有提案必须选定一个
2、只选定一个
3、选定后,可以获取到
四、为什么Paxos难理解
因为对原论文(Paxos made simple)的翻译偏差导致
看到推导过程就蒙了
原论文 推导过程P1、P2、P2a、P2b、 P2c
五、开始推导
提案: proposal,也就是要达成一致的值
三种角色
proposers :发出提案
acceptor :表决提案
leaner (可以先忽略)
1、P1咋来的?为了先满足目标1(有提案就必须选定一个)

P1:一个acceptor 必须接受第一个收到的提案
解读:因为存

本文深入探讨Paxos算法,解释其解决一致性问题的原理。通过逐步推导P1和P2,阐述如何确保在分布式环境中选定唯一的提案。文章详细介绍了提案、提议者、接受者等核心概念,以及P2b和P2c的实现策略,帮助读者理解这一复杂而重要的分布式算法。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



