完整的强化学习词典

每当我开始学习一个对我来说是新的学科时,我发现最难应付的是它的新术语。 每个领域都有很多术语和定义,对于外人来说完全是晦涩难懂的,并且会使新手的第一步变得相当困难。

当我踏入这个世界或强化学习的第一步时,我被每隔一行出现的新术语所震撼,并且总是让我感到惊讶的是,这些复杂的单词背后是多么简单而合乎逻辑的想法。 因此,我决定用我自己的话把它们都写下来,这样我就可以随时查找它们,以防我忘记了。 这本词典就是这样诞生的。

这不是强化学习的介绍文章,而是在学习时提供帮助的补充工具。 如果你也想在这个领域开始你的道路,我可以推荐以下内容:

  • 如果您正在寻找包含代码示例的 10 分钟 RL 速成课程,请查看我的 Qrash 课程系列:RL 和 Q-Learning 简介以及 Policy Gradients 和 Actor-Critics
  • 如果您有更深入的了解,并且想学习和编写几种不同的 RL 算法并获得更多直觉,我可以推荐 Thomas Simonini 的这个系列Arthur Juliani 的这个系列
  • 如果您准备好掌握 RL,我将指导您阅读强化学习的“圣经”——Richard Sutton 和 Andrew Barto 的“Reinforcement Learning, an introduction”。 第二版(从 2018 年开始)以 PDF 文件的形式免费(合法)提供。

我会尽我所能,不断更新这本词典。 如果我错过了任何重要的事情或做错了什么,请随时告诉我。

词典

Action-Value Function:Q-Value

Actions: 动作(actions)是agent的方法,它允许它交互和改变它的环境(environment),从而在状态(states)之间转移。 agent执行的每个动作都会从环境中产生奖励(reward)。 选择哪个动作由策略(policy)决定。

Actor-Critic: 在尝试解决强化学习问题时,可以选择两种主要方法:计算每个状态的值函数或 Q Q Q 值并根据它们选择动作,或者直接计算定义每个动作根据当前状态应该采取的概率的策略 ,并按其行事。 Actor-Critic 算法将这两种方法结合起来,以创建更稳健的方法。 可以在这里找到一个很棒的插图漫画解释。

Advantage Function: 通常表示为 A ( s , a ) A(s,a) A(s,a),优势函数是衡量在给定状态下某个动作的好坏决定的量度——或者更简单地说,从某个状态中选择某个动作的优势是什么。它在数学上定义为:
A ( s , a ) = E [ r ( s , a ) − r ( s ) ] A(s,a)=\mathbb{E}\left[ r(s,a)-r(s) \right] A(s,a)=E[r(s,a)r(s)]
其中 r ( s , a ) r(s,a) r(s,a) 是来自状态 s s s 的动作 a a a 的预期奖励,而 r ( s ) r(s) r(s) 是在选择动作之前整个状态 s s s 的预期奖励。 也可以看成:
A ( s , a ) = Q ( s , a ) − V ( s ) A(s,a)=Q(s,a)-V(s) A(s,a)=Q(s,a)V(s)
其中 Q ( s , a ) Q(s,a) Q(s,a) Q Q Q 值, V ( s ) V(s) V(s) 是值函数。

Agent: 强化学习问题的学习和行动部分,它试图最大化环境给予的奖励。 简单地说,Agent 就是你尝试设计的模型。

Bandits:老虎机(slot-machines)的昵称“one-armed bandit”之后正式命名为“k-Armed Bandits”,这些被认为是最简单的强化学习任务类型。 Bandits没有不同的状态,只有一个——考虑的奖励只是立即的。 因此,Bandits可以被认为是具有单一状态的回合(Episodes)。 每个 k 臂都被认为是一个动作,目标是学习在每个动作(或手臂拉动)后最大化预期奖励的策略。Contextual Bandits是一项稍微复杂的任务,其中每个状态可能不同并影响动作的结果——因此每次context都是不同的。 尽管如此,该任务仍然是一个单一状态的回合任务,一个context不能影响其他上下文。

Bellman Equation: 形式上,贝尔曼方程定义了给定状态(或状态-动作对)与其后继状态之间的关系。 虽然存在多种形式,但强化学习任务中最常见的一种是最优 Q 值的贝尔曼方程,由下式给出:
Q ∗ ( s , a ) = ∑ s ′ , s p ( s ′ , r ∣ s , a ) [ r + γ max ⁡ a ′ Q ∗ ( s ′ , a ′ ) ] Q^*(s,a)=\sum_{s',s}p(s',r|s,a)\left[ r+\gamma\max_{a'}Q^*(s',a') \right] Q(s,a)=s,sp(s,rs,a)[r

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值