Hdu 5029 Relief grain(树链剖分)

题目大意:

给出一棵树。

然后有m个操作,每个操作都在两点的路径上分配不同的粮食。

最后要求输出所有村庄有的最多的粮食的种类。


思路分析:

一眼就看得出来是树链剖分的题目。

现在的问题就是,每一次操作,如何维护每个点的最多的食物编号,以及最多的食物的数量。要记录这两个值是肯定的。

首先可以想到将所有的操作按照z排序。这样每一回合操作,称一回合为处理同一种颜色。一回合结束之后,后面的操作就不会影响前面取得的最大值。因为后面的操作的食物的种类不一样,是不可以再继续累加的。

然后可以发现一个规律,就是每处理完一种颜色之后,在线段树上,颜色比这种颜色编号大的颜色都存在了这个节点的树形结构的上面。也就是父亲节点甚至是父亲节点的父亲节点。

所以我们就直接考虑pushdown部分吧,这是这道题目的难点。

假设操作只有 2 3 4这三种食物。

我们首先先处理完了所有食物种类为2的所有操作。

现在在处理种类为3的操作。如果这个操作的指定区间的lazy标记的颜色也是3.那么就直接累加,毫无疑问。但是如果这个区间是2...由于我们现在还在处理3,你不确定后面还有多少种类为3的操作,所以我们就要将这个种类为2的lazy往下推(用递归的pushdown实现)。然后将3更新。

按照如上操作处理了3之后。

现在我们处理种类为4的。我们注意到之前说的规律。

2一定在3下面,那么4的下面也之后有3.

所以现在种类4的操作,碰到了4.那么也是直接累加无疑问。好,如果碰到操作三,按照我们上述的,要将3pushdown。但是,在pushdown3的过程中,这个3又会遇到lazy颜色为2的。产生冲突。但是我们注意到,如果是4将3推下去,而且3又碰到了2,也就以为着,这个子树只有一个节点的lazy是3了。为什么,还是那个规律。自己想一下就明白。

所以意思就是下面不会有三,那个节点的全部三就是所有操作的全部三。当递推下的3的数量比碰到的那个2的数量还要小,也就意味着以下的节点的答案不可能是3 的。

但是如果2比三小,可能这下面还有一些2没有累加,所以就把2递推下去,再递推3下去,再更新4.

好,现在我们分析时间复杂度。

首先m此操作。

然后查找熟练logn

线段树更新logn

那么这个pushdown的递归呢。

因为递归层数是不会超过logn的。

所以最多也就是 m*log^3...


当然最优解肯定不是这个。。。


#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <utility>
#pragma comment(linker,"/STACk:10240000,10240000")
#define maxn 100005
#define lson num<<1,s,mid
#define rson num<<1|1,mid+1,e
#define mid ((s+e)>>1)
using namespace std;

int next[maxn<<1],to[maxn<<1],head[maxn],tot;//临界表
int pre[maxn],root[maxn],siz[maxn],son[maxn],w[maxn],dep[maxn],id;//原树的父亲 链上的根 siz 有最大siz的子树 重新分配的id 深度 getid中来计数的
pair<int,int>ans[maxn<<2];//线段树变量
pair<int,int>cov[maxn<<2];
int n,cur;
void init()
{
    pre[1]=0;
    dep[1]=0;
    tot=0;id=0;
    memset(head,0,sizeof head);
}
void addedge(int u,int v)
{
    tot++;
    next[tot]=head[u];
    to[tot]=v;
    head[u]=tot;
}
void dfs(int now)//to get size,son,dep,pre...
{
    son[now]=0;
    siz[now]=1;
    for(int p =head[now]; p ; p=next[p])
    {
        int t=to[p];
        if(t!=pre[now])
        {
            pre[t]=now;
            dep[t]=dep[now]+1;
            dfs(t);
            if(siz[t]>siz[son[now]])son[now]=t;
            siz[now]+=siz[t];
        }
    }
}
void getid(int now,int rt)//to get w and root...
{
    w[now]=++id;
    root[now]=rt;
    if(son[now])getid(son[now],rt);
    for(int p = head[now] ; p ; p=next[p])
    {
        int t=to[p];
        if(t!=son[now]&&t!=pre[now])
            getid(t,t);
    }
}
void pushdown(int num,int s,int e)
{
    if(s==e)
    {
        cov[num].first=cov[num].second=0;
        return;
    }
    if(cov[num].second)
    {
        if(cov[num<<1].second==cov[num].second)
            cov[num<<1].first+=cov[num].first;
        else
        {
            if(cov[num<<1].first<cov[num].first || cov[num].second==cur)
            {
                pushdown(lson);
                cov[num<<1]=cov[num];
            }
        }
        if(s==mid)
        {
            if(cov[num<<1].first>ans[num<<1].first)
            ans[num<<1]=cov[num<<1];
        }


        if(cov[num<<1|1].second==cov[num].second)
            cov[num<<1|1].first+=cov[num].first;
        else
        {
            if(cov[num<<1|1].first<cov[num].first || cov[num].second==cur)
            {
                pushdown(rson);
                cov[num<<1|1]=cov[num];
            }
        }
        if(mid+1==e)
        {
            if(cov[num<<1|1].first>ans[num<<1|1].first)
                ans[num<<1|1]=cov[num<<1|1];
        }
        cov[num].first=cov[num].second=0;
    }
}
void build(int num,int s,int e)
{
    ans[num].first=ans[num].second=0;
    cov[num].first=0;
    cov[num].second=0;
    if(s==e)return;
    build(lson);
    build(rson);
}
void update(int num,int s,int e,int l,int r,int val)
{
    if(l<=s && r>=e)
    {
        if(cov[num].second==val)
            cov[num].first++;
        else
        {
            pushdown(num,s,e);
            cov[num].first++;
            cov[num].second=val;
        }
        if(s==e){
            if(cov[num].first>ans[num].first)
                ans[num]=cov[num];
        }
        return;
    }
    pushdown(num,s,e);
    if(l<=mid)update(lson,l,r,val);
    if(r>mid)update(rson,l,r,val);
}
int query(int num,int s,int e,int pos)
{
    if(s==e)return ans[num].second;
    pushdown(num,s,e);
    if(pos<=mid)return query(lson,pos);
    else return query(rson,pos);
}
void work(int x,int y,int val)
{
    while(root[x]!=root[y])
    {
        if(dep[root[x]]<dep[root[y]])swap(x,y);
        update(1,1,n,w[root[x]],w[x],val);
        x=pre[root[x]];
    }
    if(dep[x]>dep[y])swap(x,y);
    update(1,1,n,w[x],w[y],val);
}
struct node
{
    int x,y,z;
    bool operator < (const node &cmp)const{
        return z<cmp.z;
    }
}line[maxn];
int main()
{
    int m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(n==0 && m==0)break;
        init();

        for(int i=1;i<=n-1;i++)
        {
            int s,e;
            scanf("%d%d",&s,&e);
            addedge(s,e);
            addedge(e,s);
        }

        dfs(1);
        getid(1,1);

        build(1,1,n);

        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&line[i].x,&line[i].y,&line[i].z);
        }
        sort(line+1,line+1+m);

        for(int i=1;i<=m;i++){
            int x,y,z;
            cur=line[i].z;
            work(line[i].x,line[i].y,line[i].z);
        }
        cur=-1;
        for(int i=1;i<=n;i++)
        {
            printf("%d\n",query(1,1,n,w[i]));
        }
    }
    return 0;
}
/*
2 4
1 2
1 1 1
1 2 2
2 2 2
2 2 1
5 3
1 2
3 1
3 4
5 3
2 3 3
1 5 2
3 3 3

5 4
1 2
2 3
3 4
4 5
1 5 1
1 3 2
1 2 2
1 1 3

5 5
1 2
2 3
3 4
4 5
1 1 1
1 2 1
1 3 2
1 5 2
1 3 2

5 5
1 2
2 3
3 4
4 5
1 2 1
1 2 1
1 3 2
1 1 2
1 1 2


5 10
1 2
2 3
3 4
4 5
1 1 1
1 1 1
1 1 2
1 1 2
1 1 1
1 1 2
1 1 3
1 1 3
1 1 3
1 1 3
0 0
*/



#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#pragma comment(linker,"/STACk:10240000,10240000")
#define maxn 100005
#define lson num<<1,s,mid
#define rson num<<1|1,mid+1,e
using namespace std;

int next[maxn<<1],to[maxn<<1],head[maxn],tot;//临界表
int pre[maxn],root[maxn],siz[maxn],son[maxn],w[maxn],dep[maxn],fp[maxn],id;//原树的父亲 链上的根 siz 有最大siz的子树 重新分配的id 深度 getid中来计数的
int mx[maxn<<2],mz[maxn<<2];//线段树变量

int n;
void init()
{
    pre[1]=0;
    dep[1]=0;
    tot=0;id=0;
    memset(head,0,sizeof head);
}
void addedge(int u,int v)
{
    tot++;
    next[tot]=head[u];
    to[tot]=v;
    head[u]=tot;
}
void dfs(int now)//to get size,son,dep,pre...
{
    son[now]=0;
    siz[now]=1;
    for(int p =head[now]; p ; p=next[p])
    {
        int t=to[p];
        if(t!=pre[now])
        {
            pre[t]=now;
            dep[t]=dep[now]+1;
            dfs(t);
            if(siz[t]>siz[son[now]])son[now]=t;
            siz[now]+=siz[t];
        }
    }
}
void getid(int now,int rt)//to get w and root...
{
    w[now]=++id;
    fp[w[now]]=now;
    root[now]=rt;
    if(son[now])getid(son[now],rt);
    for(int p = head[now] ; p ; p=next[p])
    {
        int t=to[p];
        if(t!=son[now]&&t!=pre[now])
            getid(t,t);
    }
}
void pushup(int num)
{
    if(mx[num<<1]>=mx[num<<1|1])
    {
        mx[num]=mx[num<<1];
        mz[num]=mz[num<<1];
    }
    else {
        mx[num]=mx[num<<1|1];
        mz[num]=mz[num<<1|1];
    }
}
void pushdown(int num,int s,int e)
{

}
void build(int num,int s,int e)
{
    if(s==e)
    {
        mx[num]=0;
        mz[num]=s;
        return;
    }
    int mid=(s+e)>>1;
    build(lson);
    build(rson);
    pushup(num);
}
void update(int num,int s,int e,int pos,int val)
{
    if(s==e)
    {
        mx[num]+=val;
        return;
    }
   // pushdown(num,s,e);
    int mid=(s+e)>>1;
    if(pos<=mid)update(lson,pos,val);
    else update(rson,pos,val);
    pushup(num);
}

vector <int> add[maxn];
vector <int> sub[maxn];
void work(int x,int y,int val)
{
    while(root[x]!=root[y])
    {
        if(dep[root[x]]<dep[root[y]])swap(x,y);
        add[w[root[x]]].push_back(val);
        sub[w[x]+1].push_back(val);
        //update(1,1,n,w[root[x]],w[x],val);
        x=pre[root[x]];
    }
    if(dep[x]>dep[y])swap(x,y);
    add[w[x]].push_back(val);
    sub[w[y]+1].push_back(val);
   // update(1,1,n,w[x],w[y],val);
}
int save[maxn];
int main()
{
    int m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(!n && !m)break;
        init();
        for(int i=1;i<=n-1;i++)
        {
            int s,e;
            scanf("%d%d",&s,&e);
            addedge(s,e);
            addedge(e,s);
        }
        dfs(1);
        getid(1,1);

        for(int i=1;i<=100000;i++)
        {
            add[i].clear();
            sub[i].clear();
        }
        while(m--)
        {
            int u,v,z;
            scanf("%d%d%d",&u,&v,&z);
            work(u,v,z);
        }
        build(1,1,100000);
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<add[i].size();j++)
                update(1,1,100000,add[i][j],1);
            for(int j=0;j<sub[i].size();j++)
                update(1,1,100000,sub[i][j],-1);

            if(mx[1]==0)save[fp[i]]=0;
            else save[fp[i]]=mz[1];
        }

        for(int i=1;i<=n;i++)
            printf("%d\n",save[i]);
    }
    return 0;
}
/*
2 4
1 2
1 1 1
1 2 2
2 2 2
2 2 1
5 3
1 2
3 1
3 4
5 3
2 3 3
1 5 2
3 3 3

5 4
1 2
2 3
3 4
4 5
1 5 1
1 3 2
1 2 2
1 1 3

5 5
1 2
2 3
3 4
4 5
1 1 1
1 2 1
1 3 2
1 5 2
1 3 2

5 5
1 2
2 3
3 4
4 5
1 2 1
1 2 1
1 3 2
1 1 2
1 1 2


5 10
1 2
2 3
3 4
4 5
1 1 1
1 1 1
1 1 2
1 1 2
1 1 1
1 1 2
1 1 3
1 1 3
1 1 3
1 1 3
0 0
*/


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值