目标检测与跟踪
大写的ZDQ
这个作者很懒,什么都没留下…
展开
-
YOLOv3配置文件源码详解
YOLOv3的配置文件,其中需要注意的是数据增强的方式,有两个,一个是角度旋转+饱和度+曝光量+色调,外加jitter,随即调整宽高比的范围。之后需要注意的就是3个尺度的box的mask。后续要知道他们是怎么整合起来的[net]# Testing# batch=1# subdivisions=1# Trainingbatch=64 #训练样本样本数subdivisions=16...原创 2019-08-30 13:01:37 · 958 阅读 · 0 评论 -
这可能是最详细的目标检测YOLO_v1的解释
YOLO 是 2016 年提出来的目标检测算法,在当时比较优秀的目标检测算法有 R-CNN、Fast R-CNN 等等,但 YOLO 算法还是让人感到很新奇与兴奋。YOLO 是 You only look once 几个单词的缩写,大意是你看一次就可以预测了,灵感就来自于我们人类自己,因为人看一张图片时,扫一眼就可以得知这张图片不同类型目标的位置。1.创新YOLO将物体检测作为回归问题求解。...原创 2018-12-20 11:53:25 · 17752 阅读 · 5 评论 -
史上最详细的Kalman滤波解读与实践(python)
项目课题当中有使用到Kalman滤波的算法思想,这里总结一下这个神奇算法的过程。什么是卡尔曼滤波?对于这个滤波器,我们几乎可以下这么一个定论:只要是存在不确定信息的动态系统,卡尔曼滤波就可以对系统下一步要做什么做出有根据的推测。即便有噪声信息干扰,卡尔曼滤波通常也能很好的弄清楚究竟发生了什么,找出现象间不易察觉的相关性。因此卡尔曼滤波非常适合不断变化的系统,它的优点还有内存占用较小(只需保留...原创 2019-05-17 15:35:29 · 23486 阅读 · 8 评论 -
Ubuntu中文件管理卡死的问题(卡到不能自理)
发现Ubuntu系统在拷贝很大的文件,或者清空回收站的时候,很容易发生文件管理卡死,就是整个文件系统界面给黑掉了。1 这里第一种情况是可以操作别的浏览器或者IDE,唯独不能操作文件系统。解决方案: 使用如下ps -A |grep nautilus #查看是哪个文件管理出了问题然后继续killall nautilus #把那个文件管理进程杀死即可2 如果连其他的都不能使用了(系统直...原创 2019-05-06 22:05:59 · 10289 阅读 · 1 评论 -
马氏距离通俗解读
转自https://blog.csdn.net/lzhf1122/article/details/72935323基础知识:假设空间中两点x,y,定义:欧几里得距离,Mahalanobis距离,不难发现,如果去掉马氏距离中的协方差矩阵,就退化为欧氏距离。那么我们就需要探究这个多出来的因子究竟有什么含义。例子:如果我们以厘米为单位来测量人的身高,以克(g)为单位测量人的体重。每个人被表...转载 2019-05-03 22:09:42 · 907 阅读 · 0 评论 -
最详细DeepSort论文解读
1 摘要DeepSort是在Sort目标追踪基础上的改进。引入了在行人重识别数据集上离线训练的深度学习模型,在实时目标追踪过程中,提取目标的表观特征进行最近邻匹配,可以改善有遮挡情况下的目标追踪效果。同时,也减少了目标ID跳变的问题。2 核心思想算法的核心思想还是用一个传统的单假设追踪方法,方法使用了递归的卡尔曼滤波和逐帧的数据关联。2.1 轨迹处理和状态估计该部分的思路和sort很接近...原创 2019-04-21 19:54:14 · 16163 阅读 · 5 评论 -
这才是目标检测YOLOv3的真实面目
之前的两篇YOLO的发展历史YOLOv1 https://blog.csdn.net/u010712012/article/details/85116365YOLOv2 https://blog.csdn.net/u010712012/article/details/852747112018年又出现了YOLOv3,相比于SSD,FasterRCNN,RetinaNet,速度都是更快的,作者很...原创 2019-02-22 21:40:18 · 14019 阅读 · 14 评论 -
Tensorflow实现YOLOv2(亲测有效!)
一、全部代码如下:代码部分tf函数见下面第二部分。yolo2的预测过程大致分为以下3部分。1、model_darknet19.py:yolo2网络模型——darknet19。YOLOv2采用了一个新的基础模型(特征提取器),称为Darknet-19,包括19个卷积层和5个maxpooling层,如下图。Darknet-19与VGG16模型设计原则是一致的,主要采用33卷积,采用22的max...原创 2019-02-15 17:35:26 · 6303 阅读 · 14 评论 -
目标检测YOLOv2最详细解释!
原创 2019-02-15 16:02:08 · 8095 阅读 · 1 评论 -
目标检测之RCNN,SPPNet,Fast-RCNN,Faster-RCNN
在深度学习出现之前,传统的目标检测方法大概分为区域选择(滑窗)、特征提取(SIFT、HOG等)、分类器(SVM、Adaboost等)三个部分,其主要问题有两方面:一方面滑窗选择策略没有针对性、时间复杂度高,窗口冗余;另一方面手工设计的特征鲁棒性较差。自深度学习出现之后,目标检测取得了巨大的突破,最瞩目的两个方向有:1 以RCNN为代表的基于Region Proposal的深度学习目标检测算法(R...原创 2019-01-11 22:13:00 · 810 阅读 · 0 评论