题目链接:hdu1394
/*hdu 1394 Minimum Inversion Number(线段树单点更新)
题目大意:
给定一组数,不停的将数列的第一个数放在数列的最后,
形成一个新的数列,找出所有数列中逆序数最小是多少
思路:
只需要求出原始数列的逆序数即可,转化后的数列的逆序数
可以通过原始数列的逆序数得出。
逆序数求法:
将数列的每个点依次加入到线段树中,每个叶子节点sum[]==1
表示该点已加入到线段树中,非叶子节点表示该区间中已加入线段树
的数的个数。
查询时,假设查询的数为i,那么就查找区间[i,n](n是点的个数)
中已加入线段树中的数的总数,即该点的逆序数。查询i时线段树中的数
都是数列中在i前面的数,那么只需查找比i大的区间的数的个数
*/
#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
const int N = 5100;
int sum[N<<2];
int a[N];
void build(int l, int r, int rt)
{
sum[rt] = 0;
if(l == r) return;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void update(int pos, int l, int r, int rt)
{
if(l == pos && pos == r)
{
sum[rt] ++;
return;
}
int m = (l + r) >> 1;
if(pos <= m) update(pos, lson);
if(pos > m) update(pos, rson);
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
int query(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R)
return sum[rt];
int m = (l + r) >> 1;
int ans = 0;
if(L <= m)
ans += query(L, R, lson);
if(m < R)
ans += query(L, R, rson);
return ans;
}
int main()
{
int n,i;
while(~scanf("%d",&n))
{
build(0, n-1, 1);
int cnt = 0;
for(i = 0; i < n; i ++)
{
scanf("%d",&a[i]);
cnt += query(a[i], n-1, 0, n-1, 1);
update(a[i], 0, n-1, 1);
}
int ans = cnt;
for(i = 0; i < n; i ++)
{
cnt = cnt + (n - a[i] - 1) - a[i];
//上一个序列的逆序对数加上比a[i]大的(a[i]放到最后一个位置后,
//能与前面每一个比它大的构成逆序对)再减去比a[i]小的
ans = min(ans, cnt);
}
printf("%d\n",ans);
}
return 0;
}