二分+贪心(总结)

这篇博客总结了利用二分和贪心算法解决的五道编程题,包括poj2456、poj1064、nyoj914、hdu4004/nyoj619及nyoj680。通过二分法缩小搜索范围,结合贪心策略求解最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近做了几道二分+贪心的题目,做下总结

基本思路:通过二分,将范围逐步缩小,直到最优解

1、poj2456

/*
题意:
    有n个牛栏,选m个放进牛,相当于一条线段上有 n 个点,选取 m 个点,
使得相邻点之间的最小距离值最大

思路:贪心+二分
    二分枚举相邻两牛的间距,判断大于等于此间距下能否放进所有的牛。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 1e6+10;
int a[N],n,m;
bool judge(int k)//枚举间距k,看能否使任意两相邻牛
{
    int cnt = a[0], num = 1;//num为1表示已经第一头牛放在a[0]牛栏中
    for(int i = 1; i < n; i ++)//枚举剩下的牛栏
    {
        if(a[i] - cnt >= k)//a[i]这个牛栏和上一个牛栏间距大于等于k,表示可以再放进牛
        {
            cnt = a[i];
            num ++;//又放进了一头牛
        }
        if(num >= m) return true;//所有牛都放完了
    }
    return false;
}
void solve()
{
    int l = 1, r = a[n-1] - a[0];//最小距离为1,最大距离为牛栏编号最大的减去编号最小的
    while(l < r)
    {
        int mid = (l+r) >> 1;
        if(judge(mid)) l = mid + 1;
        else r = mid;
    }
    printf("%d\n",r-1);
}
int main()
{
    int i;
    while(~scanf("%d%d",&n,&m))
    {
       
<think>好的,我现在需要回答用户关于使用二分法求解最长上升子序列(LIS)的算法和代码示例的问题。首先,我需要回忆一下相关知识,确保自己正确理解二分法在LIS中的应用。 我记得传统的动态规划方法时间复杂度是$O(n^2)$,而二分法可以优化到$O(n \log n)$。这种优化方法通常通过维护一个递增的序列,然后利用二分查找来替代逐个比较,从而减少时间。 接下来,我应该先解释算法的基本思路。可能的关键点包括维护一个数组`tails`,其中`tails[i]`表示长度为i+1的子序列的最小末尾元素。这样,对于每个新元素,我们可以通过二分查找确定它在`tails`中的位置,从而更新这个数组。 然后,需要给出具体的步骤说明。比如遍历数组中的每个元素,对每个元素使用二分查找在`tails`中找到第一个大于等于当前元素的位置,替换它。如果当前元素比所有`tails`中的元素都大,就追加到末尾。这样,最终`tails`的长度就是LIS的长度。 接下来要考虑代码实现。可能需要写一个Python的例子,因为用户之前的示例是Python。代码需要包括遍历元素,进行二分查找,更新数组的逻辑。需要注意的是,Python中可以用`bisect`模块的`bisect_left`函数来实现二分查找。 同时,要确保代码正确,比如处理边界情况,例如空数组的情况。此外,还要解释代码的关键部分,比如为什么替换`tails`中的元素不会影响最终结果,以及这种方法的正确性依据。 还要考虑用户可能的疑问,比如为什么这种方法能得到正确的结果,或者时间复杂度是如何计算的。可能需要在回答中简要提及这些点,以增强回答的完整性和可信度。 最后,根据用户的要求,生成相关问题。这些问题应该围绕二分法优化LIS的其他方面,比如与动态规划的比较,时间复杂度的分析,或者实际应用场景。 需要确保整个回答结构清晰,分步骤解释,并且引用提供的参考文献中的相关内容,比如引用动态规划的方法作为对比,或者引用提到的二分法相关的资料。引用标记要自然地加在相关内容的末尾,比如在提到动态规划时引用[^1]或[^4],在提到二分法时引用[^2]。 现在需要检查是否有遗漏的步骤或错误的理解。比如,确认`tails`数组的正确维护方式,以及二分查找的具体应用是否正确。此外,确保代码示例没有语法错误,并且注释清晰。 可能还需要比较不同方法的优缺点,比如动态规划与二分法优化的区别,帮助用户更好地理解为何选择二分法。同时,可能需要提到实际应用中这种优化带来的性能提升,尤其是在处理大数据量时。 总结下来,回答的结构应该是:算法思路、步骤详解、代码示例(Python)、正确性说明、时间复杂度分析,然后相关问题部分。确保每个部分都简明扼要,同时覆盖关键点。</think>### 使用二分法求解最长上升子序列(LIS)的算法 #### 算法思路 传统的动态规划方法时间复杂度为$O(n^2)$,而二分法可将复杂度优化至$O(n \log n)$[^2]。其核心是维护一个数组`tails`,其中`tails[i]`表示**长度为$i+1$的上升子序列的最小末尾元素**。通过贪心策略和二分查找,逐步更新该数组,最终其长度即为LIS的长度。 #### 步骤详解 1. **初始化**:`tails`为空数组。 2. **遍历原数组**:对每个元素`num`执行以下操作: - 若`num`大于`tails`的最后一个元素,将其追加到`tails`末尾。 - 否则,使用二分查找在`tails`中找到第一个**大于等于**`num`的位置,并用`num`替换该位置的元素。 3. **结果获取**:遍历完成后,`tails`的长度即为LIS的长度。 #### 正确性说明 - **贪心策略**:替换操作保证了`tails`中每个位置的值尽可能小,从而为后续元素提供更大的扩展空间。 - **单调性保证**:`tails`始终严格递增,因此可以使用二分查找[^4]。 #### 代码示例(Python) ```python import bisect def length_of_lis(nums): if not nums: return 0 tails = [] for num in nums: idx = bisect.bisect_left(tails, num) # 二分查找插入位置 if idx == len(tails): tails.append(num) else: tails[idx] = num return len(tails) # 示例 d = [5, 6, 7, 1, 2, 8] print(length_of_lis(d)) # 输出4(对应序列5,6,7,8或1,2,8) ``` #### 时间复杂度分析 - **遍历数组**:$O(n)$。 - **每次二分查找**:$O(\log n)$。 - **总复杂度**:$O(n \log n)$,显著优于动态规划的$O(n^2)$[^2][^3]。 #### 与动态规划的对比 动态规划通过状态转移方程$dp[i] = \max(dp[i], dp[j] + 1)$逐个比较,而二分法通过维护单调序列减少冗余计算。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值