n后问题

暴力求解

#include <stdio.h>   
#include <math.h>   
  
int place(int *arr,int n)
{
	int i,j;
    for(i=0;i<n;i++)  
		for(j=i+1;j<n;j++)  
			if( arr[i]==arr[j] || abs(i-j)==abs(arr[i]-arr[j]) ) 
				return 0;   
	return 1;
}

int main()  
{  
	int i,j,k,flag=0;
    int n,count=0;    
    int *arr;  
  
    printf("Input n:");  
    scanf("%d",&n);  
	arr=new int[n]; 
 
    for(k=0;k<pow(n,n);k++){  
        j=k;  
        for(i=0;i<n;i++){  
            arr[i]=j%n;  
            j=j/n;  
        }  
          
        flag=place(arr,n);  
        
        if(flag==1)  
            count++;  
    }  
  
    printf("The count:%d\n",count);  
  
    return 0;  
}  


回溯求解

//在n*n的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋的规则,皇后可以攻击与之
//处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n*n格的棋盘上放置n个皇后,
//任何2个皇后不放在同一行或同一列或同一斜线上。


//回溯法
#include <stdio.h>  
#include <math.h>  
int *x;	//一维数组存储每行的皇后对应列的位置
int n;  
int sum;  
  
//判断是否在同一列或同一斜线上
int place(int k)  
{  
    int i;  
    for(i=0;i<k;i++)  
        if(x[i]==x[k] || abs(i-k)==abs(x[i]-x[k]))   
            return false;    
    return true;  
}  
  
//回溯
void backtrack(int t)  
{  
    int i;  
    if(t==n) sum++;  //到达最后一层,即t==n
    else  
    {  
        for(i=0;i<n;i++){  
            x[t]=i;		
            if(place(t))	//回溯之前判断之前是否place对,提高效率   
                backtrack(t+1);  
        }  
  
    }  
}  
  
  
int main()  
{  
    int i;  
      
    printf("input the number of queens:");  
    scanf("%d",&n);  
      
    x=new int [n];  
    for(i=0;i<n+1;i++)  
        x[i]=0;  
  
    sum=0;  
    backtrack(0);  
  
    printf("%d\n",sum);  
    return 0;  
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值