题意:一个数组的weirdness是这个数组中所有最大公约数的最大值。给出一个数组a,将a中
[i,j]
之间的部分去掉,剩下的部分的weirdness就是f(i,j),求所有的i,j的组合的weirdness的和。
思路按照官方的题解就好了:
如果我们计算出一个数组H,
Hi
代表了有多少个(l-r)使得
f(l,r)≤i
,这样我们就可以很容易得到解。
下面计算H。维护一个vector,
vi
以升序保存了所有有约数i的元素的下标。我们从最大的元素向1迭代。在迭代的时候维护另一个数组
next
。假设我们正在迭代i,
nextj
保存了最左边的下标k,使得
f(j,k)≤i
。有时候不存在这样的k,那么
nextj
就是n+1.
Hi
等于
∑np=1n−nextp+1
,因为假设l=p,那么r至少是
nextp
,这样每一个l我们可以选择
n−nextp+1
个不同的r。
再来看看如何在从i迭代到i-1的时候更新next数组。
假设
vi
包含
b1,b2,b3…bk
。注意
l−r
至少会覆盖
k−1
个下标。
l
一定小于等于
- 返回小于k的最右侧的
nexti
的下标i
- 返回next数组的和
- 将l到r之间的元素置k
如果更新和查询的复杂度在
O(logn)
,那么总体的复杂度就是
O(nlogn)
。使用STL的set也可以得到同样的复杂度。
我的代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
ll H[200005];
int a[200005];
ll c[200005 << 2];
ll s[200005 << 2];
ll lz[200005 << 2];
vector<int> v[200005];
int u;
int yl,yr;
void build(int o,int l,int r)
{
if(l == r){
lz[o] = l;
c[o] = l;s[o] = l;return;
}
int mid = (l+r) >> 1;
build(o*2,l,mid);
build(o*2+1,mid+1,r);
lz[o] = -1;
c[o] = c[o*2] + c[o*2+1];
s[o] = min(s[o*2],s[o*2+1]);
}
void pushdown(int o,int l,int r)
{
if(l == r)return;
if(lz[o] == -1)return;
lz[o * 2] = lz[o];lz[o*2+1] = lz[o];
s[o*2] = lz[o];s[o*2+1]=lz[o];
int mid = (l+r) >> 1;
c[o*2] = lz[o] * (mid - l + 1);
c[o*2+1] = lz[o] * (r - mid);
lz[o] = -1;
}
void update(int o,int l,int r)
{
if(yl <= l && yr >= r){
c[o] = 1LL * u *(r - l + 1);
s[o] = u;
lz[o] = u;return;
}
pushdown(o,l,r);
int mid = (l + r) >> 1;
if(yl <= mid)update(o*2,l,mid);
if(yr > mid) update(o*2+1 , mid+1,r);
c[o] = c[o*2] + c[o*2+1];
s[o] = min(s[o*2],s[o*2+1]);
if(lz[o*2] == lz[o*2+1] && lz[o*2] >= 0)lz[o] = lz[o*2];
}
int query(int o,int l,int r)
{
if(l == r && c[o] < u )return l;
if(l == r && c[o] >=u )return 0;
if(lz[o]!=-1 && lz[o] < u)return r;
if(lz[o] != -1 && lz[o] >= u)return 0;
int mid = (l+r)>>1;
if(s[o*2+1] < u)return query(o*2+1,mid+1,r);
else return query(o*2,l,mid);
}
int main()
{
// freopen("data.txt","r",stdin);
int n;
scanf("%d",&n);
int mx = -1;
memset(a,0,sizeof(a));
for(int i = 1; i < n+1 ; ++i){
int tmp;
scanf("%d",&tmp);
a[tmp] = i;
mx = max(mx,tmp);
}
for(int i = 1; i <=mx; ++i){
for(int j = 1;j*i<=mx;++j){
if(a[j*i])
v[i].push_back(a[j*i]);
}
}
for(int i = 0; i <= mx;++i)sort(v[i].begin(),v[i].end());
ll sum =1LL * n * (n+1);
build(1,1,n);
for(int i = mx; i >= 0; --i){
H[i] = sum - c[1];
int k = v[i].size();
if(k < 2){continue;}
u = n + 1;
yl = v[i][1]+1;yr = n;
if(yl <= yr)
update(1,1,n);
u = v[i][k-1];
int pos = query(1,1,n);
pos = min(pos , v[i][1]);
if(pos > v[i][0] && pos <= v[i][1]){
yl = v[i][0] + 1;yr = pos;
update(1,1,n);
}
u = v[i][k-2];
pos = query(1,1,n);
pos = min(pos , v[i][0]);
if(pos >= 1 && pos <= v[i][0]){
yl = 1;yr = pos;
update(1,1,n);
}
}
ll ans = 0;
for(int i = 1 ;i <= mx; ++i){
ans += 1LL * i * (H[i] - H[i-1]);
}
printf("%I64d\n",ans);
}