【泛函】赋范空间和Banach空间(数学知识用程序表达轻松学系列)

本文介绍了从度量空间到Banach空间的数学知识,探讨了度量空间、序列、完备度量空间的概念,以及范数、赋范空间和Banach空间的特性。特别强调了在完备度量空间中,证明序列收敛只需证明其为柯西列,而无需找出具体极限。此外,还提及了内积空间和Hilbert空间,阐述了它们在数学和计算中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人们在研究各种实际数学问题时发现,虽然他们的研究对象不同(序列、函数、欧式空间中的点),但研究方法和技巧(距离、内积、逼近、微分)本质上是一样的。
为了研究更加抽象的空间,并且运用已知空间的一些方法,对特殊空间做同样的变换和操作,我们需要定义一种抽象的长度,这种长度称为范数。

知识图谱:

Banach空间 -> 范数 -> 度量空间

1、度量空间(Metric Space)

X X X为集合, d d d X × X X \times X X×X上的实值函数。称d为X上的度量(也称为距离),若d满足下述公理
1、非负性:
2、非退化性:
3、对称性:
4、三角不等式:

class Xtype:
    pass

def d(x, y):
    # type: (Xtype, Xtype) -> int
    raise NotImplementedError()
   
X = set()  # type: Set[Xtype]
MetricSpace = (X, d)  # type: Tuple[Set[Xtype], Callable[[Xtype, Xtype], int]]

我们讲度量空间 ( X , d ) (X,d) (X,d),实际上是指一个tuple或一个类,其中包含了集合 X X X和函数 d d d。这里 X X X用另外一种表述也是可以的,就是类型Xtype。我们用到 X X X的地方主要有2个:

  1. 表示 x ∈ X x \in X xX。假设X = set(),那么 x ∈ X x \in X xX其实就是x in X;如果假设X = Xtype,那么 x ∈ X x \in X xX其实就是isinstance(x, X)
  2. 另外一种就是表示“ d d d X × X X \times X X×X上的实值函数”,中间这个乘号颇有意思,似乎表示乘起来?

回到我们最开始的定义:

X X X为集合, d d d X × X X \times X X×X上的实值函数。

那么X应该是一个集合set()咯?但是后一句“ d d d X × X X \times X X×X上的实值函数”又怎么解释呢?似乎在说 X X X为一个类型type,函数 d d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值