一次快速排序错误引发的思考

http://blog.jobbole.com/93806/

快速排序是目前基于关键字的内部排序算法中平均性能最好的,它采用了分治策略,这既是快速排序的优点也是它的缺点。从快速排序的算法描述上我们可以发现它具有递归的结构:

  • (1)确定一个分界,将待排序的数组分为左、右两个部分;
  • (2)使所有小(大)于临界值的数据移到左部分,大(小)于临界值的数据移到右部分;
  • (3)这时左、右两个部分成为了两个独立的数组,分别对它们执行(1)(2)(3)的操作,直到所有数据都是有序的状态为止。

照这样的描述我们不难写出快排的代码,我平时遇到排序的问题,只要数据量上了100,想都不想就用快排来解决,但是当我用下面这个程序测试时却出现了问题:

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
 
#define NUM 10000000    /*待排序的数据量*/
 
voidquick_sort(doublea[], longleft, longright);
 
intmain(void)
{
    clock_tt_s, t_e; 
    longi;
    doublea[NUM];
 
    srand(time(NULL));
    for(i = 0; i < NUM; ++i) {
        a[i] = rand();
    }
 
    t_s = clock();
    quick_sort(a, 0, NUM-1);
    t_e = clock();
    doublet = (t_e - t_s) / (double)CLOCKS_PER_SEC; 
/*计算排序用时*/
 
    printf("Quick sort %d items used time:%f s\n", NUM, t); 
 
    return0;
}
 
voidquick_sort(doublea[], longleft, longright)
{
    longi = left;
    longj = right;
    doublemid = a[(i + j) / 2]; 
/*以中间元素作为比较的基准*/
 
    while(i <= j) {
        while(a[i] < mid)
            ++i;
        while(mid < a[j])
            --j;
        if(i <= j) {
            doublet = a[i];
            a[i] = a[j];
            a[j] =t;
            ++i;
            --j;
        }
    }
 
    if(i < right) quick_sort(a, i, right);
    if(left < j) quick_sort(a, left, j);

我在Linux上运行这个程序出现了”Segmentation fault “错误,而当NUM==1000000时却没有这个错误。查阅相关资料得知这是由于程序递归次数太多,大量的压栈使程序占用的栈空间超过了操作系统所规定的大小,从而出现的内存错误。

我用ulimit -s指令的得到的结果是8192,也就是说我的系统默认给每个程序分配的大概是8M的栈空间。用指令ulimit -s unlimited使栈空间变成实际内存大小后,上面的程序就可以顺利运行而不出错误了(因为Linux上不像Windows可以把栈的大小写入可执行文件中,所以只能用ulimit -s更改的方法了)。

难道因为栈的限制,快速排序能够处理的数据量就有上限了吗?那还不如用选择排序——虽然慢,但至少不会出错,于是我找到了这篇文章:快速排序的非递归实现。其实说是“非递归”,只不过是用自己管理的栈来消除递归,算法本质上没有区别,而且从这篇文章作者的测试来看,用栈的方法比用递归的方法反而更慢(作者将其解释为:“用栈的效率比递归高,但是在这个程序中局部变量也就是要每次压栈的数据很少,栈的优势体现不出来,反而更慢……”,我认为这种观点是不对的,由于递归可以理解为有了一个“系统帮你自动管理的栈”,它的效率肯定是要比你自己管理的栈要高的,况且你在进行弹栈和压栈操作时又调用了新函数,算上调用的开支,用栈的方法肯定比递归慢),不过栈在这里的优势是可以不用考虑操作系统的问题,而且能够处理的数据量只和内存大小有关,不必受到操作系统对栈空间大小的限制(即使用栈,快排也比很多排序算法要快得多)。

以前在学排序算法的时候,专门有讲怎样根据实际问题来选择合适的排序算法,但是我图“省事”,就只用快排和简单选择排序。遇到了这个问题也让我对算法的选择和实现上有了更多认识,同时也了解到用栈消除递归在有些场合(比如系统栈空间受限)的重要意义。


前面我说到所谓的“非递归”快速排序算法,不过是用栈来消除了递归,它的运行时间肯定比递归算法长,我们不妨来实际实现一下。代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
 
#define MAX_TOP 10000 /*一个很大的栈*/
#define NUM 500L
 
/*有关栈的数据结构*/
structRegion {
    longleft;
    longright;
};
 
structStack {
    structRegion reg[MAX_TOP+1];
    longtop;
};
 
/*对栈进行操作的函数*/
voidinit_stack(structStack *s);
voidpush_stack(structStack *s, structRegion r);
structRegion pop_stack(structStack *s);
intis_stack_empty(structStack *s);
 
/*与排序有关的函数*/
 
longpartition(doublea[], longleft, longright);    
/*划分区间*/
voidnr_qsort(doublea[], longleft, longright);
 
intmain(void)
{
    doublea[NUM];    
/*待排序数据*/
    clock_tt_s, t_e;
    longi;
 
    srand(time(NULL));
    for(i = 0; i < NUM; ++i)
        a[i] = rand() % 1000000;
 
    
/*统计运行时间*/
    t_s = clock();
    nr_qsort(a, 0, NUM-1);
    t_e = clock();
    doublet = (t_e - t_s) / (double) CLOCKS_PER_SEC;
    printf("Non Recursive quick sort %ld items used time: %f s\n", NUM, t);
 
    return0;
}
 
/*implementation*/
 
voidinit_stack(structStack *s)
{
    s->top = -1;
}
 
voidpush_stack(structStack *s, structRegion r)
{
    if(s->top == MAX_TOP) {
        fprintf(stderr,"Stack overflow!\n");
        exit(0);
    }
    s->reg[++s->top] = r;
}
 
structRegion pop_stack(structStack *s)
{
    if(s->top == -1) {
        fprintf(stderr,"Stack underflow!\n");
        exit(0);
    }
    return(s->reg[s->top--]);
}
 
intis_stack_empty(structStack *s)
{
    return(s->top == -1);
}
 
/*返回划分的区间*/
longpartition(doublea[], longleft, longright)
{
    doublebase = a[left];    
/*以最左边的元素作为比较基准*/
 
    while(left < right) {
        while(left < right && a[right] > base)
            --right;
        a[left] = a[right];
        while(left <right && a[left] < base)
            ++left;
        a[right] = a[left];
    }
    a[left] = base;
    return   left; 
}
 
voidnr_qsort(doublea[], longleft, longright)
{
    structStack s;
    structRegion region, regionlow, regionhi;
    longp; 
/*记录划分出的分界点*/
 
    init_stack(&s);
    region.left = left;
    region.right = right;
    push_stack(&s, region);
 
    while(!is_stack_empty(&s)) {
        region = pop_stack(&s);
        p = partition(a, region.left, region.right);
        if(p-1 > region.left) {
            regionlow.left = region.left;
            regionlow.right = p - 1;
            push_stack(&s, regionlow);
        }
        if(region.right > p + 1) {
            regionhi.left = p + 1;
            regionhi.right = region.right;
            push_stack(&s, regionhi);
        }
    }
 
}

在代码的第110行至第122行的while循环中,做的正是用栈消除递归的工作。想想递归的算法中,把划分好的左右区间界限(即left,right)保存到了系统管理的栈中,这里手动把每次划分出来的区间分界保存至栈中,当第113和118行的两个条件不满足时,所在区间的元素都是有序的状态,此时不进行压栈操作而向前返回(即递归的回调)。关于用栈消除递归的算法可以参考关于数据结构的书籍,比如陈锐的《零基础学数据结构》有关栈的那一章就有介绍。实际运行两个程序的结果如下:

$ ./nr_qsort 
#非递归算法的快排
Non Recursive quick sort500 items used time: 0.000261 s
$ ./qsort
#递归算法的快排 
Quicksort500 items used time:0.000104 s

之所以只用了500个数据,是因为超过1000个数据后,非递归快排的速度就慢的令人难以忍受。下面是另外两次关于递归算法快排的测试:

$time./qsort
Quick sort 1000000 items used time:0.289171 s
 
real    0m0.372s
user    0m0.332s
sys     0m0.012s
 
#下面更改NUM即数据的个数为10000000
 
$ ./qsort
Segmentation fault #超出栈的大小
 
$ ulimit -s unlimited #更改栈的大小为不受限
$time./qsort
Quick sort 10000000 items used time:3.259025 s #成功进行了排序
 
real    0m4.044s
user    0m3.740s
sys     0m0.172s

这也印证了之前谈到的系统默认限制带来的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值