题目大意:给你一个连通无向图,在给你一个序列,要求你把它转换成另一个序列,该序列两两点之间或者在图上是连通的,或者是相同的,要求修改的点数最小。
思路:典型的DP题,设d[ i ][ j ] 表示从1到第i个位置,以j为结尾的最小修改点数,那么状态转移方程为:d[ i ][ j ] = min( d[ i -1 ][ k ],j和k满足连通或者相等 )。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 0x0fffffff ;
const int MAXN = 111 ;
int d[MAXN<<1][MAXN];
int map[MAXN][MAXN];
int num[MAXN<<1];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
memset(map,0,sizeof(map));
for(int i = 1;i<=n;i++)
map[i][i] = 1;
int a,b;
for(int i = 0;i<m;i++)
{
scanf("%d%d",&a,&b);
map[a][b] = 1;
map[b][a] = 1;
}
int len;
scanf("%d",&len);
for(int i = 0; i<len;i++)
{
scanf("%d",&num[i]);
}
for(int i = 0;i<len;i++)
for(int j = 1;j<=n;j++)
d[i][j] = INF;
for(int i =1;i<=n;i++)
d[0][i] = 1;
d[0][num[0]] = 0;
for(int i = 1;i<len;i++)
{
int x =num[i];
for(int j = 1;j<=n;j++)
for(int k = 1;k<=n;k++)
if(map[j][k] == 1)
{
d[i][j] = min(d[i][j],d[i-1][k]+( j == x ? 0 : 1 ));
}
}
int ans = INF;
for(int i = 1;i<=n;i++)
ans = min(ans,d[len-1][i]);
printf("%d\n",ans);
}
return 0;
}