题目大意:
给出一个无向联通图和一串数字,然后要你修改这串数字,使得数字在无向联通图中是连通的或者它们是相等的。
思路:
DP。
dp[i][j]表示的是从1到第i个数字以j结尾需要修改多少个数字。
dp[i][j] = min(dp[i][j],dp[i - 1][k] + (j == x?0:1)) 其中x表示的是给出的序列中第i个位置的数字是多少。
这个状态转移方程的前提是j跟k必须是联通的。
代码:
#include <iostream>
using namespace std;
#include <cstring>
#include <stdio.h>
const int INF = 0x3f3f3f3f;
const int maxn = 1010;
int dp[maxn][maxn];
int map[maxn][maxn];
int num[maxn];
int main() {
int kase;
scanf("%d",&kase);
while(kase--) {
int n,m,len;
scanf("%d %d",&n,&m);
memset(map,0,sizeof(map));
for(int i = 1; i <= n; i++)
map[i][i] = 1;
int u,v;
for(int i = 0; i < m ; i++) {
scanf("%d %d",&u,&v);
map[u][v] = 1;
map[v][u] = 1;
}
scanf("%d",&len);
for(int i = 0; i < len; i++)
scanf("%d",&num[i]);
for(int i = 0; i < len;i++)
for(int j = 1; j <= n; j++)
dp[i][j] = INF;
for(int i = 1; i <= n; i++)
dp[0][i] = 1;
dp[0][num[0]] = 0;
for(int i = 1; i < len; i++) {
int x = num[i];
for(int j = 1; j <= n; j++) {
for(int k = 1; k <= n; k++)
if(map[j][k] == 1)
dp[i][j] = min(dp[i][j],dp[i - 1][k] + (j == x ?0:1));
}dp[i][j] = min(dp[i][j],dp[i - 1][k] + (j == x ?0:1));
}
}
int ans = INF;
for(int i = 1; i <= n; i++)
ans = min(ans,dp[len - 1][i]);
printf("%d\n",ans);
}
return 0;
}